Analytic Functions Related with the Hyperbola
Analytic Functions Related with the Hyperbola
摘要
The author considers a new class SHλum(α) of normalized analytic functions defined by a differential operator. Several basic properties and characteristics of the functions belonging to the class SHλum(α) are investigated. These include integral rep- resentations, coefficient bounds, the Fekete^Szeg5 problem, class-preserving operators and Tg-neighborhoods.
参考文献19
-
1Ali, R. M., Subramanian, K. G., Ravichandran, V. and Ahuja, O. P., Neighborhoods of starlike and convex functions associated with parabola, J. Inequal. Appl., 2008, 346279, 9 pages.
-
2A1-Oboudi, F. M., On univalent functions defined by a generalized S:l:gean operator, Internat. J. Math. Math. Sci., 27, 2004, 1429-1436.
-
3Altintas, O., Ozkan, O. and Srivastava, H. M., Neighborhoods of a certain family of multivalent functions with negative coefficients, Cornput. Math. Appl., 47, 2004, 1667-1672.
-
4Barnard, R. W. and Kellogg, C., Applications of convolution operators to problems in univalent function theory, Michigan Math. J., 27(1), 1980, 81-94.
-
5Bednarz, U. and Sok61, J., On T-neighborhoods of analytic functions, J. Math. Appl., 32, 2010, 25-32.
-
6Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokio, vol. 259, 1983.
-
7Kanas, S., Coefficient estimates in subclasses of the Carath6odory class related to conic domains, Acta. Math. Univ. Comenianae, 2, 2005, 149-161.
-
8Mishra, A. K. and Goehhayat, P., Fekete-Szeg5 problem for k-uniformly convex functions and for a class defined by the Owa-Srivastava operator, J. Math. Anal. Appl., 347, 2008, 563-572.
-
9Mishra, A. K. and Gochhayat, P., A coefficient inequality for a subclass of Carath6odory functions defined by conical domains, Cornput. Math. Appl., 61(9), 2011, 2816-2820.
-
10Orhan, H., Deniz, E. and R:ducanu, D., The Fekete-Szeg5 problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl., 59(1), 2010, 283-295.
-
1SongYan.THE POINCAR BIFURCATION OF QUADRATIC SYSTEMS HAVING A REGION CONSISTING OF PERIODIC CYCLES BOUNDED BY A HYPERBOLA AND AN ARC OF EQUATOR[J].Annals of Differential Equations,2005,21(1):33-38. 被引量:2
-
2ZHAOHong,GUOJun,BAICheng-Lin,HANJi-Guang.New Exact Solutions for a Class of Nonlinear Coupled Differential Equations[J].Communications in Theoretical Physics,2005,43(5):781-786.
-
3王佳东,何广华,张德贺.基于CIP法的波物相互作用强非线性数值模拟[J].水动力学研究与进展(A辑),2016,31(5):542-548. 被引量:3
-
4WANG Dongda.THE QUADRATIC SYSTEM WITH QUADRATIC ALGEBRAIC CURVE SOLUTION[J].Chinese Science Bulletin,1983,28(11):1446-1448.
-
5李亚娟,汪国昭.Two kinds of B-basis of the algebraic hyperbolic space[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(7):750-759. 被引量:13
-
6CHU Xinjie,DONG Sheng,ZHAO Xizeng.Prediction of the Mooring Force of a 2-D Floating Oil Storage Tank[J].Journal of Ocean University of China,2014,13(6):901-910. 被引量:4