期刊文献+

Theorems of Erds-Ko-Rado type in geometrical settings

Theorems of Erds-Ko-Rado type in geometrical settings
原文传递
导出
摘要 The original Erdos-Ko-Rado problem has inspired much research. It started as a study on sets of pairwise intersecting k-subsets in an n-set, then it gave rise to research on sets of pairwise non-trivially intersecting k-dimensional vector spaces in the vector space V(n, q) of dimension n over the finite field of order q, and then research on sets of pairwise non-trivially intersecting generators and planes in finite classical polar spaces. We summarize the main results on the Erdos-Ko-Rado problem in these three settings, mention the ErdSs-Ko-Rado problem in other related settings, and mention open problems for future research. The original Erds-Ko-Rado problem has inspired much research. It started as a study on sets of pairwise intersecting k-subsets in an n-set, then it gave rise to research on sets of pairwise non-trivially intersecting k-dimensional vector spaces in the vector space V (n, q) of dimension n over the finite field of order q, and then research on sets of pairwise non-trivially intersecting generators and planes in finite classical polar spaces. We summarize the main results on the Erds-Ko-Rado problem in these three settings, mention the Erds-Ko-Rado problem in other related settings, and mention open problems for future research.
出处 《Science China Mathematics》 SCIE 2013年第7期1333-1348,共16页 中国科学:数学(英文版)
基金 supported by FWO-Vlaanderen(Research Foundation-Flanders)
关键词 Erdos-Ko-Rado theorem finite sets finite vector spaces finite classical polar spaces 鄂尔多斯 雷达表 瑞士 设置 几何 定理 表型 向量空间
  • 相关文献

参考文献43

  • 1Blokhuis A, Brouwer A E, Chowdhury A, et al. A Hilton-Milner theorem for vector spaces. Electron J Combin, 2010, 17:71.
  • 2Blokhuis A, Brouwer A E, Sz6nyi T. On the chromatic number of q-Kneser graphs. Des Codes Cryptogr, 2012, 65: 187-197.
  • 3Blokhuis A, Brouwer A E, Sz6nyi T, et al. On q-analogues and stability theorems. J Geom, 2011, 101:31-50.
  • 4Bose R C, Shimamoto T. Classification and analysis of partially balanced incomplete block designs with two associate classes. J Amer Statist Assoc, 1952, 47:151-184.
  • 5Brouwer A E, Cohen A M, Neumaier A. Distance-regular graphs. In: Ergebnisse der Mathematik und ihrer Grenzge- biete, vol. 18. Berlin: Springer-Verlag, 1989.
  • 6Brouwer A E, Godsil C D, Koolen J H, et al. Width and dual width of subsets in polynomial association schemes. J Combin Theory Ser A, 2003, 102:255-271.
  • 7Brouwer A E, Hemmeter J. A new family of distance-regulax graphs and the (0, 1, 2}-cliques in dual polar graphs. European J Combin, 1992, 13:71-79.
  • 8Cameron P J, Ku C Y. Intersecting families of permutations. European J Combin, 2003, 24:881-890.
  • 9Chowdhury A, Godsii C, Royle G. Colouring lines in projective space. J Combin Theory Ser A, 2006, 113:39-52.
  • 10Chowdhury A, PatkSs B. Shadows and intersections in vector spaces. J Combin Theory Ser A, 2010, 117:1095-1106.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部