期刊文献+

Permutation polynomials with low differential uniformity over finite fields of odd characteristic 被引量:2

Permutation polynomials with low differential uniformity over finite fields of odd characteristic
原文传递
导出
摘要 In this paper, we propose a construction of functions with low differential uniformity based on known perfect nonlinear functions over finite fields of odd characteristic. For an odd prime power q, it is proved that the proposed functions over the finite field Fq are permutations if and only if q≡3(mod 4). In this paper, we propose a construction of functions with low differential uniformity based on known perfect nonlinear functions over finite fields of odd characteristic. For an odd prime power q, it is proved that the proposed functions over the finite field Fq are permutations if and only if q = 3 (mod 4).
出处 《Science China Mathematics》 SCIE 2013年第7期1429-1440,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.61070172,10990011 and 61170257) the External Science and Technology Cooperation Program of Hubei Province(Grant No.2012IHA01402) National Key Basic Research Program of China(Grant No.2013CB834203) the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA06010702)
关键词 PERMUTATION perfect nonlinear function almost perfect nonlinear function differential uniformity 差分均匀性 有限域 置换多项式 奇特征 完全非线性函数 素数幂 mod 排列
  • 相关文献

参考文献30

  • 1Beth T, Ding C. On almost perfect nonlinear permutations. In: Advances in Cryptology Eurocrypt'93. Lecture Notes on Computer Science, vol. 765. Berlin: Springer-Verlag, 1994, 65-76.
  • 2Bierbrauer J. New semifields, PN and APN functions. Des Codes Cryptogr, 2010, 54:189-200.
  • 3Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems. J Cryptol, 1991, 4:3-72.
  • 4Bracken C, Leander G. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields Appl, 2010, 16:231-242.
  • 5Browning K, Dillon J, Kibler R, et al. APN polynomials and related codes. J Combin Inform Sys Sci, 2009, 34: 135-159.
  • 6Browning K, Dillon J, McQuistan M, et al. An APN permutation in dimension six. In: Proceedings of the 9th Conference on Finite Fields and Applications FQ9. Contemp Math, 2010, 518:33-42.
  • 7Budaghyan L, Helleseth T. New perfect nonlinear multinomials over Fp2k for any odd prime p. In: Proceedings of International Conference on Sequences and Their Applications SETA 2008. Lecture Notes on Computer Science, voh 5203. Berlin: Springer-Verlag, 2008, 403-414.
  • 8Budaghyan L, Carlet C, Pott A. New classes of almost bent and almost perfect nonlinear functions. IEEE Trans Inform Theory, 2006, 52:1141-1152.
  • 9Budaghyan L, Helleseth T. New commutative semifields defined by new PN multinomials. Cryptogr Commun, 2011, 3:1-16.
  • 10Carlet C. Vectorial Boolean functions for cryptography. In: Crama Y, Hammer P, eds. Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge: Cambridge University Press, 2010:398-472.

同被引文献5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部