摘要
该文考虑一类含有时滞的捕食者染病的生态—流行病SIS模型,主要利用特征根法讨论了平衡点的存在性及其稳定性,证明了当时滞τ=0时,正平衡点是局部渐近稳定的,随着时滞增加,正平衡点由稳定变为不稳定,系统在正平衡点附近产生Hopf分支。
A delayed SIS predator- prey epidemiologieal system with disease spreading in predator population is considered. Using the method of characteristic equation the existence and stability of the equilibrium point are ana- lyzed. Positive equilibrium is locally asymptotically stable when time delay T = 0 is showed. While a loss of stability by a Hopf bifurcation can occur as the delays increase.
出处
《延安大学学报(自然科学版)》
2013年第2期26-30,共5页
Journal of Yan'an University:Natural Science Edition
基金
陕西省教育厅自然科学专项基金(11JK0511)