期刊文献+

具有时滞的生态-流行病SIS模型的稳定性和Hopf分支 被引量:1

Stability and Hopf Bifurcation of An Eco-Epidemiological SIS Model with Delays
下载PDF
导出
摘要 该文考虑一类含有时滞的捕食者染病的生态—流行病SIS模型,主要利用特征根法讨论了平衡点的存在性及其稳定性,证明了当时滞τ=0时,正平衡点是局部渐近稳定的,随着时滞增加,正平衡点由稳定变为不稳定,系统在正平衡点附近产生Hopf分支。 A delayed SIS predator- prey epidemiologieal system with disease spreading in predator population is considered. Using the method of characteristic equation the existence and stability of the equilibrium point are ana- lyzed. Positive equilibrium is locally asymptotically stable when time delay T = 0 is showed. While a loss of stability by a Hopf bifurcation can occur as the delays increase.
机构地区 西北大学数学系
出处 《延安大学学报(自然科学版)》 2013年第2期26-30,共5页 Journal of Yan'an University:Natural Science Edition
基金 陕西省教育厅自然科学专项基金(11JK0511)
关键词 生态-流行病模型 渐近稳定 HOPF分支 predator - prey model asymptotically stable Hopf bifurcation
  • 相关文献

参考文献6

  • 1孙树林,原存德.捕食者有病的生态-流行病SIS模型的分析[J].工程数学学报,2005,22(1):30-34. 被引量:27
  • 2Yan X P,Li W T,Zhang J F. Hopf bifurcation and stabilityof periodic solutions in a delayed eco - epidemiological sys-tem, Appl. Math. Comput 2008( 198) :865 -876.
  • 3Nagumo N. Uberdie lage der Integralkurven gewonlicher Dif-ferantiagleichungen [ J]. Proc Phys Math Socjapan, 1942,24(2):551 -587.
  • 4SongY,Han M,Wei J. Stability and hopf bifurcation analy-sis on a simplified BAM neural network with delays [ J].Physica D 2005(200) :185 -204.
  • 5Hale J K. Theory of functional differential equations [ M].Springer - Verlag,New York, 1997.
  • 6XueY K,Wang X Q. Stability and local Hopf bifrucation fora predator-prey model with delay [ J]. Nature and Society,2012,ID252437.

二级参考文献5

  • 1Venturino E. The influence of diseases on Lotka-Volterra system[J]. Rockymount J Math, 1994;24:389-402.
  • 2Chattopadhyay J, Arino O. A predator-prey model with disease in the prey[J]. Nonlinear Anal, 1999;36:749-766.
  • 3Yanni Xiao, Lansun Chen. Analysis of a three species eco-epidemiological model[J].J Math Appl,2001;258:733-754.
  • 4Nagumo N. Uber die lage der Integralkurven gewonlicher differantiagleichungen[J].Proc Phys Math Soc Japan,1942;24:551-567.
  • 5Hale J K, Waltman P. Persistence in infinite-dimensional system[J]. SIAM J Math Anal,1989;20:388-396.

共引文献26

同被引文献9

  • 1肖燕妮,周义仓,唐三一.生物数学原理[M].西安:西安交通大学出版社,2012.
  • 2魏俊杰,王洪滨,蒋卫华.时滞微分方程的分支理论及应用[M].北京:科学出版社,2012.
  • 3Hearn T, Haurie C, Mackey M. Cyclical neutropenia and the peripheral control of white blood cell production[ J ]. Journal of Theoretical Biology, 1998,192 (2) : 167 - 181.
  • 4Haurie C, Dale D, Rudnicki R, et al. Modeling complex neu- trophil dynamics in the grey collie [ J ]. Journal of Theoretical Biology ,2000,204 (4) - 505 - 519.
  • 5Bernard S, Belair J, Mackey M. Oscillations in cyclical neu- tropenia: new evidence based on mathematical modeling [ J]. Journal of Theoretical Biology, 2003,223 ( 3 ) : 283 - 298.
  • 6雷锦誌.系统生物学--建模,分析,模拟[M].上海:上海科学技术出版社,2010.
  • 7Pawelek K, Liu S, Pahlevani F, et al. A model of HIV - 1 in- fection with two time delays: Mathematical analysis and comparison with patient data [ J ]. Mathematical Biosci- ences,2012,235 ( 1 ) : 98 - 109.
  • 8Ding Yuting, Jiang Weihua, Yu Pei. Bifurcation analysis in a recurrent neural network model with delays [ J ]. Communica- tions in Nonlinear Science and Numerical Simulation,2013, 18(2) : 351 -372.
  • 9Ruan Shigui, Wei Junjie. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays [ J ]. Dynamics of Continuous, Discrete & Impulsive Systems Series A: Mathematical a- nalysis,2003,10 (6) : 863 - 874.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部