期刊文献+

扩散张量磁共振图像分割研究进展 被引量:1

Progress in segmentation of diffusion tensor magnetic resonance images
原文传递
导出
摘要 随着扩散张量成像(diffusion tensor imaging,DTI)在临床的广泛应用,扩散张量分割方法已成为国内外医学图像处理与分析领域的研究热点之一.本文对近年来提出的各种扩散张量图像分割方法进行了综述,重点分析了以聚类、图割和水平集为基础的扩散张量分割方法的研究现状及其最新进展,分别讨论了各类方法中代表性算法的主要计算思路,并定性地分析、比较了这些算法的分割对象、所采用的相似性测度以及优缺点.最后,归纳总结了现有方法的主要特点,同时对扩散张量图像分割方法的未来发展方向进行了展望. With the broad usage of diffusion tensor imaging (DTI) modality in clinical medical treatment, the DT image segmentation has become a research focus on medical image processing and analysis at home and abroad. In this paper, we reviewed various segmentation methods of DT images in recent years, and mainly investigated the state of the art and recent advances of those based on clustering, graph cuts and level set. Moreover, we discussed the computing procedure of each typical algorithm respectively, analyzed and compared segmentation objects, advantages, disadvantages and similarity metrics of these methods qualitatively. At the end, after summarizing main characteristics of existing methods, we prospected future development trend on DT image segmentation.
出处 《科学通报》 EI CAS CSCD 北大核心 2013年第18期1719-1730,共12页 Chinese Science Bulletin
基金 国家重点基础研究发展计划(2010CB732500) 国家自然科学基金(60903127 30900380 61202314) 西北工业大学基础研究基金(JCY20130130) 西北工业大学"翱翔之星计划"项目资助
关键词 图像分割 扩散张量成像 聚类 图割 水平集 相似性测度 image segmentation diffusion tensor imaging clustering graph cuts level set similarity metrics
  • 相关文献

参考文献68

  • 1Lenglet C,Rousson M,Deriche R.DTI segmentation by statistical surface evolution.IEEE Trans Med Imaging,2006,25:685-700.
  • 2Basser P,Mattiello J,LeBihan D.MR diffusion tensor spectroscopy and imaging.Biophysica,1994,66:259-267.
  • 3Haz-Edine A,David T,Luc B,et al.Recent advances in diffusion MRI modeling:Angular and radial reconstruction.Med Image Anal,2011,15:369-396.
  • 4LeBihan D,Mangin J,Poupon C,et al.Diffusion tensor imaging:Concepts and applications.J Magn Reson Imaging,2001,13:534-546.
  • 5Susumu M,Zhang J.Principles of diffusion tensor imaging and its applications to basic neuroscience research.Neuron,2006,51:527-539.
  • 6Wang Z Z,Vemuri B C.Tensor field segmentation using region based active contour model.In:Proceedings of European Conference on Computer Vision.Prague,Czech Republic,2004.304-315.
  • 7Wang Z Z,Vemuri B C.An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation.In:Proceedings of IEEE Computer Society Conference Computation Vision and Pattern Recognition.Washington D C,USA,2004.228-233.
  • 8Wang Z Z,Vemuri B C.DTI segmentation using an information theoretic tensor dissimilarity measure.IEEE Trans Med Imaging,2005,24:1267-1277.
  • 9Lenglet C,Rousson M,Deriche R,et al.A Riemannian approach to diffusion tensor images segmentation.In:Proceedings of Information Processing in Medical Imaging.Colorado,USA,2005.591-602.
  • 10Lenglet C,Rousson M,Deriche R,et al.Statistics on the manifold of multivariate normal distributions:Theory and application to diffusion tensor MRI processing.J Math Imaging Vis,2006,25:423-444.

二级参考文献18

  • 1章卫祥,周秉锋.一种改进的Graph Cuts交互图像分割方法[J].影像技术,2007,19(4):22-24. 被引量:2
  • 2DEUTSCH G K, DOUGHERTY R F, BAMMER R, et al. Children's reading performance is correlated with white matter structure measured by diffusion tensor imaging [J]. Cortex, 2005, 41(3) : 354 - 363.
  • 3BIHAN D, MANGIN J F, POUPON C, et al. Diffusion tensor imaging: concepts and applications [J]. Journal of Magnetic Resonance Imaging, 2001, 13(4): 534 - 546.
  • 4HENRIETTA T, ROBERT T, MARIANNA Z. Complex fiber visualization [J]. Annales Mathematicae et Informaticae, 2007, 34(1) : 103 - 109.
  • 5BASSER P J, MATTIELLO J, BIHAN D. MR diffusion tensor spectroscopy and imaging [J]. Biophysical Journal, 1994, 66(1): 259 - 267.
  • 6GOLDBERG A, TARJAN R. A new approach to the maximum-ow problem [J]. Journal of the ACM, 1988, 35(4): 921 - 940.
  • 7BASSER P, MATTIELLO J, BIHAN D. Estimation of the effective self-diffusion tensor from the NMR spin echo [J]. Journal of Magnetic Resonance, 1994, 103(3): 247 - 254.
  • 8YEATMAN P J, SHACHAR M B, BAMMER R, et al. Using diffusion tensor imaging and fiber tracking to characterize diffuse perinatal white matter[J]. Journal of Child Neurology, 2009, 24(7): 795-800.
  • 9DERICHE R, TSCHUMPERLE D, LENGLET C. DT MRI estimation, regularization and fiber tractography [C]// Biomedical Imaging: Macro to Nano, IEEE International Symposium. Arlington: IEEE, 2004:9 - 12.
  • 10LI Hua, YEZZI A, COHEN L D. Fast 3D brain segmentation using dual-front active contours with option al user-interaction [J]. International Journal of Biomedical Imaging, 2005, 3765 : 335 - 345.

共引文献8

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部