期刊文献+

复杂网络上同时考虑感染延迟和非均匀传播的SIR模型 被引量:5

A novel SIR model with infection delay and nonuniform transmission in complex networks
下载PDF
导出
摘要 为了能更有效地分析和理解传染性疾病的传播,提出了一个新颖的SIR模型,在这个传播模型里同时考虑了影响疾病传播行为的2个因素:感染延迟和非均匀传播.基于平均场理论和大量的数值仿真,给出了疾病传播临界值的解析公式,并发现感染延迟和非均匀传播对临界值影响截然不同:感染延迟能够在很大程度上减小传播阈值,促进疾病在人群中的传播;而非均匀传播能够增大传播临界值,阻碍疾病的大规模传播.当前的研究结果有助于深入理解真实复杂系统中的疾病传播行为,充分考虑感染延迟、传播机制和实际人群的拓扑结构等因素在疾病传播中的作用,从而为制定有效的传染病预防和控制措施提供理论依据. In order to analyze and understand the spreading behavior of infectious diseases, the authors propose to examine susceptible-infected-removed (SIR) model. The researchers simultaneously introduce into the epidemic model the two factors: influencing disease spreading behavior, and infection delay and nonuniform transmission, utilizing the SIR model. Based on the mean-field approximation and large-scale numerical simulations, the analytical results of critical thresholds of disease spreading were derived, along with the infection delay and the nonuniform transmission having a distinct impact on the critical threshold. The infection delay can greatly decrease the critical threshold and facilitate the spread of epidemics, while the nonuniform transmission can augment the critical threshold and hinder the epidemic spreading in complex networks. Current results are conducive to further understand the epidemic spreading inside the complex real systems, as well as to fully consider the roles of infection delay, transmission factors and topological structure of population in the spreading of diseases. The results also provide a number of theoretical evidence to design more effective epidemic prevention and containment measures.
出处 《智能系统学报》 CSCD 北大核心 2013年第2期128-134,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60904063 61203138) 天津市应用基础及前沿技术研究计划资助项目(11JCYBJC06600) 天津市高等学校科技发展基金资助项目(20090813)
关键词 感染延迟 非均匀传播 临界值 复杂网络 SIR模型 infection delay nonuniform transmission critical threshold complex networks SIR model
  • 相关文献

参考文献28

  • 1DYE C, GAY N. Modeling the SARS epidemic [ J ]. Science, 2003, 300(5627) : 1884-1885.
  • 2SMALL M, WALKER D M, TSE C K. Scale free distribution of avian influenza outbreaks [ J ]. Physical Review Letters, 2007, 99(18) : 188702.
  • 3FRASER C, DONNELLY C A, CAUCHEMEZ S, et al. Pandemic potential of a strain of influenza A( H1N1 ) : early findings[J]. Science, 2009, 324(5934): 1557-1561.
  • 4KEELING M J, EAMES K T D. Networks and epidemic models [ J ]. Journal of the Royal Society Interface, 2005, 2 (4) : 295-307.
  • 5MAY R M. Network structure and the biology of populations [J]. Trends Ecol Evol, 2006, 21(7): 394-399.
  • 6MEYERS L A N. Contact network epidemiology: bond percolation applied to infectious disease prediction and control [J]. Amercian Mathematical Society, 2007, 44( 1 ): 63- 86.
  • 7夏承遗,刘忠信,陈增强,袁著祉.复杂网络上的传播动力学及其新进展[J].智能系统学报,2009,4(5):392-397. 被引量:19
  • 8KEPHART J O, WHITE S R. Directed-graph epidemiological models of computer viruses [ C ]//Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy. [ S. l. ] , USA, 1991 : 343-359.
  • 9KEPHART J O, WHITE S R. Measuring and modeling computer virus prevalence [ C ]//Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy. New York, USA, 1993: 2-15.
  • 10KERMACK W, MCKENDRICK A. A contribution to the mathematical theory of epidemics [ J ]. Proceedings of the Royal Society of Medicine, 1927, 115(772):700-721.

二级参考文献20

共引文献37

同被引文献53

  • 1ZHOU Tao,FU Zhongqian,WANG Binghong.Epidemic dynamics on complex networks[J].Progress in Natural Science:Materials International,2006,16(5):452-457. 被引量:36
  • 2马君潞,范小云,曹元涛.中国银行间市场双边传染的风险估测及其系统性特征分析[J].经济研究,2007,42(1):68-78. 被引量:231
  • 3万阳松,陈忠,陈晓荣.复杂银行网络的宏观结构模型及其分析[J].上海交通大学学报,2007,41(7):1161-1164. 被引量:19
  • 4Masuda N,Konno N.Multi-state epidemic process on complexnetworks [J].Journal of Theoretical Biology,2006,243(1):64-75.
  • 5Kitsak M,Gallos L K,Havlin S,et al.Identification of influential spreaders in complex networks[J].Nature Physics,2010,6:888-893.
  • 6Perdisci R,Lanzi A,Lee W.Classification of packed executables for accurate computer virus detection[J].Pattern Recognition Letters,2008,29(14):1941-1946.
  • 7Gómez S,Gómez-Gardees J,Moreno Y,et al.Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks [J].Physical Review E,2011,84(3):253-260.
  • 8KEELING M J, ROHANI P. Modeling infectious diseases in humans and animals[M]. Princeton: Princeton University Press, 2008.
  • 9EPSTEIN J M, ROHANI P. Modeling to contain pandemics[J].Nature,2009, 460(7256): 687-687.
  • 10PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86(14): 3200-3203.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部