期刊文献+

一种新型基于Chebyshev多项式的密钥协商方案 被引量:1

A New Identity Authentication Based on the Chebyshev Polynomial
下载PDF
导出
摘要 本文选取有限域的Chebyshev多项式作为研究对象,在已有的身份认证和密钥协商方案的基础上,利用Chebyshev多项式良好的混沌特性、半群特性、单向性和周期性设计了一种新型的基于Chebyshev多项式的身份认证及密钥协商方案。该方案在身份认证的基础上可以成功协商出会话密钥,并且具有很高的安全性,主要体现在可抵抗口令猜测攻击、惟密文攻击、中间人攻击和重放攻击。最后给出了本方案的仿真效率分析。 According to the identity authentication and key agreement scheme in the past, a new scheme is proposed. The scheme makes better use of the Chebyshev polynomial based on the finite fields which has chaotic property, semi - group property, one - way trapped property and cyclical property. The scheme presented can not only make the identity authentication and get the security key between two users, but also have good security property. It is proved that the scheme can resist the attack from the password guessing, the ciphertext, the middleman and the replay. In the end, a simulation of this scheme is gives and the result shows that the scheme has high efficiency .
作者 赵耿 刘慧
出处 《北京电子科技学院学报》 2013年第2期7-12,共6页 Journal of Beijing Electronic Science And Technology Institute
基金 国家自然科学基金资助(NO61170037)
关键词 密码学 CHEBYSHEV多项式 半群特性 混沌密码 身份认证 密钥协商 Cryptography Chebyshev Polynomials Semi - group Property Chaotic Cryptography I- dentity Authentication Key Agreement
  • 相关文献

参考文献12

  • 1LAMPORT L. Password authentication with inse- cure communication [ J ]. Communication of the ACM, 1981, 24(11): 770-722.
  • 2Smart N. An ID -based Authenticated Key A- greement Protocol Based on the Weil Pairing[ J]. IEE Electronics Letters, 2002, 38 ( 13 ) : 630 - 632.
  • 3Kocarev L, Tasev Z. Public- key encryption based on Chebyshev maps. ISCAS 2003, 2003, 3:28-31.
  • 4Xiao D, Liao X F, Deng S J. A novel key agree- ment protocol based on chaotic maps. Information sciences, 2007, 177 (4) : 1136 - 1142.
  • 5Pina Bergamo, Paolo D' Aroc,Alfredo De Santis etc. Security of Public Key Cryptosystems based on Chebyshev Polynomials [ J ]. IEEE Transac- tions on Circuits and Systems, 2005, 7,52 (7) : 1382 - 139.
  • 6宁红宙,刘云,何德全.一种新的会话密钥协商算法[J].高技术通讯,2005,15(11):13-16. 被引量:1
  • 7Matheswara Rao Valluri. Blind Signature Scheme based on Chebyshev Polynomials [ A ]. Internation Journal of Network Security&Its Application ( IJN- SA), Vol. 3, No. 6, Novermber 2011: 173 - 183.
  • 8Xiao D, Liao X, Deng S. A novel key agreement protocol based on chaotic maps [ J ]. Inform Sci 2007,177(4) :1136 - 1142.
  • 9廖晓峰,肖迪,陈勇,等.混沌密码学原理及其应用[H].北京:科学出版社,2009:157-161.
  • 10Han S. Security of a key agreement protocol based on chaotic maps. Chaos Solitons Fract 2008,38(3). 764 -768.

二级参考文献5

  • 1Diffie W, Hellman M E. New directions in cryptography. Information Theory, IEEE, 1976, 22(6): 644
  • 2Shannon C E. Communication theory of secrecy systems. Bell Systems Technical Journal, 1949, 28(4): 656
  • 3Kocarev L, Tasev Z. Public-key encryption based on Chebyshev maps. In: IEEE Circuits & Syst Ssoc. The 2003 IEEE International Symposium on Circuits and Systems. New York:IEEE, 2003. 28-31
  • 4Pina Bergamo, Paolo D'Arco, Alfredo De Santis, et al. Security of public key cryptosystems based on Chebyshev polynomials [ EB/OL]. http://citebase. eprints. org, 2004
  • 5Cetin Kaya Koc. High-speed RSA implementation [ EB/OL].ftp://ftp. rsasecurity. com/pub/pdfs/tr201. pdf, 1994. 13-14

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部