期刊文献+

改进碳纳米管电接触及粘贴性能的一体式冷阴极制作(英文) 被引量:3

Fabrication of Integral Type Cold Cathode with Carbon Nanotube for Improving the Electrical Contact and Adhesion Performance
下载PDF
导出
摘要 在阴极玻璃面板上研发了一种新型的一体式冷阴极.印刷的银浆被烧结后用于形成银底电极.制备了薄层底电极浆料,其中含有大量碳纳米管.将薄层底电极浆料印刷在银底电极表面,然后再将普通碳纳米管浆料制作在烘烤的薄层底电极浆料上.利用高纯度氩气作为保护气体,在烧结炉中对这两种浆料同时进行烧结.烧结后的薄层底电极将和银底电极相互融合在一起,碳纳米管层则覆盖于薄层底电极的表面.同一阴极像素中制作了两个碳纳米管发射极.备用碳纳米管发射极的存在,有利于延长整体显示器的使用寿命.利用薄层底电极作为碳纳米管层和银底电极之间的中间层,能够有效改善碳纳米管的粘贴性能,同时增强二者之间的可靠欧姆接触.利用碳纳米管作为阴极制作了一体式冷阴极场发射显示器.该显示器具有良好的发光图像质量以及更好的场发射特性.与普通碳纳米管阴极场发射显示器相比,一体式冷阴极场发射显示器能够将开启场强从2.11V/μm减小到1.68V/μm;将最大场发射电流从905μA提高到1 866.2μA;数值为367μA场发射电流的电流波动不超过4.5%.该一体式冷阴极场发射显示器已经以稳定的发光亮度而连续运行10余天. On cathode glass faceplate the new integral type cold cathode was developed. The printed silver slurry was sintered to form the silver bottom electrode. The thin-layer bottom electrode paste including a great deal of carbon nanotube was prepared, and was screen-printed on the silver bottom electrode surface. The ordinary carbon nanotube paste was fabricated on thebaked thin-layer bottom electrode paste. The two types of pastes were simultaneous sintered in the sintering furnace with the protection of high purity argon atmosphere. The sintered thin-layer bottom electrode would combine with the silver bottom electrode, which the carbon nanotube layer was covered on its surface. In one cathode pixel there were two carbon nanotube field emitters. Due to the spare carbon nanotube field emitter, the service life of field emission display could be prolonged greatly. Using thin-layer bottom electrode as interface layer between the silver bottom electrode and the carbon nanotube layer, the adhesion property of carbon nanotube was improved and the reliable ohmic contact had also been confirmed. With carbon nanotube as cathode material, the integral type cold cathode field emission displaY was fabricated, which exhibited good luminescence image quality and better field emission characteristics. Comparing with the ordinary carbon nanotube cathode field emission display, the turn-on electric-field could be reduced from 2. 11 V//am to 1. 68 V/μm, the maximum field emission current could be enhanced from 905. 7 μA to 1 866.2 μA, and the field emission current fluctuation at 367 μA would not exceed 4.5%. The integral type cold cathode field emission display has subsequently been operated for more than 10 days with stable luminance brightness.
出处 《光子学报》 EI CAS CSCD 北大核心 2013年第6期637-644,共8页 Acta Photonica Sinica
基金 The National Natural Science Foundation of China(Nos.51072184,60976058,61274078) the Natural Science Research Project of Henan Province Education Department(No.2009B510019)
关键词 冷阴极 银底电极 烧结 丝网印刷 场致发射 Cold cathode Silver bottom electrode Sintering Screen printing Field emission
  • 相关文献

参考文献16

  • 1SEKIGUCHI K, FURUICHI K, SHIRATORI Y, et al. One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating[J]. Carbon, 2012, 50(6): 2110-2118.
  • 2DAS N S, BANERJEE D, CHATTOPADHYAY K K. Enhancement of electron field emission by carbon coating on vertically aligned Si nanowires[J]. Applied Surface Science, 2011, 257(22): 9649-9653.
  • 3PATIL S S, KOINKAR P M, DHOLE S D, et al. Influence of high-energy electron irradiation on field emission properties of multi-walled carbon nanotubes (MWCNTs) films[J]. Physica B: Condensed Matter, 2011, 406(9): 1809-1813.
  • 4NEUPANE S, LASTRES M, CHIARELLA M, et al. Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper[J]. Carbon, 2012, 50(7): 2641-2650.
  • 5NAGATO K, LNOUE S, FURUBAYASHI M, et al. Field emission of vertically aligned single-walled carbon nanotubes patterned by pressing a microstructured mold[J]. Microelectronic Engineering, 2011, 88(8): 2700-2702.
  • 6LEE H S, GOAK J C, CHOI J S, et al. High-current field emission of point-type carbon nanotube emitters on Ni-coated metal wires[J]. Carbon, 2012, 50(6): 2126-2133.
  • 7田进寿,白永林,刘百玉,欧阳娴,白晓红,杨文正,秦君军,刘虎林,陈正楷,任兆玉,许蓓蕾.基于碳纳米管场发射三电极显示器的设计和实验(英文)[J].光子学报,2007,36(12):2223-2226. 被引量:3
  • 8LEE Y D, CHO W S, KIM Y C, et al. Field emission of ribonucleic acid-carbon nanotube films prepared by electrophoretic deposition[J]. Carbon, 2012, 50(3): 845-850.
  • 9李广山,田进寿,郑继明,高蓉,任兆玉.基于丝网印刷技术的碳纳米管场发射冷阴极制作[J].光子学报,2008,37(9):1743-1747. 被引量:3
  • 10FUTABA D N, KIMURA H, ZHAO B, et al. Carbon nanotube loop arrays for low-operational power, high uniformity field emission with long-term stability[J]. Carbon, 2012, 50(8): 2796-2803.

二级参考文献60

  • 1田进寿,许蓓蕾,王俊峰,周军兰,郭宝平.一种基于碳纳米管场发射的发光二极管[J].光子学报,2004,33(9):1148-1150. 被引量:3
  • 2张恩虬.逸出功的某些特性[J].电子科学学刊,1989,11(3):244-249. 被引量:4
  • 3翟春雪,张志勇,王雪文,赵武,阎军锋.钛基纳米金刚石涂层场发射阴极[J].光子学报,2007,36(1):30-33. 被引量:10
  • 4Baughman R H,Zakhidov A A,Heer W A.Carbon nanotubesthe route toward applications[J].Science,2002,297:787-792.
  • 5Talin A A,Dean K A,Jaskie J E.Field emission displays:a critical review[J].Solid State Electronics,2001,45:963-976.
  • 6Bonard J M,Kind H,St(o)ckli T,et al.Field emission from carbon nanotubes:the first five years[J].Solid State Electronics,2001,45:893-914.
  • 7Journet C,Maser W K,Bernier P,et al.Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J].Nature,1997,388:756-758.
  • 8Thess A,Lee R,Nikolaev P,et al.Crystalline ropes of metallic carbon nanotubes[J].Science,1996,273:483-487.
  • 9Ren Z F,Huang Z P,Xu J W,et al.Synthesis oflarge arrays of well-aligned carbon nanotubes on glass[J].Science,1998,282:1105-1107.
  • 10Li W Z,Xie S S,Qian L X,et al.Large-scale synthesis of aligned carbon nanotubes[J].Science,1996,274:1701-1703.

共引文献10

同被引文献22

  • 1XU N S, HUQ S E. Novel cold cathode materials and applications[J].Materials Science and Engineering R- Reports, 2005, 48(2-5): 47-189.
  • 2de HEER W A, CHATELAINE A, UGARTE D. A carbon nanotube field-emission electron source [J]. Science, 1995, 270(5239) : 1179-1180.
  • 3BONARD J M, MAIER F, STOCKLI T, etal. Field emission properties from multiwalled carbon nanotubes[J]. Ultramicroscopy, 1998, 73(1-4) : 7-15.
  • 4WU Z S, PEI S F, REN W C. Field emission of single-layer graphene films prepared by electrophoretic deposition [J]. Advanced Materials, 2009, 21(17) : 1756-1760.
  • 5LI J, CHEN J T, SHEN B S, etal. Temperature dependence of the field emission from the few-layer graphene film [J]. Applied Physics Letters, 2011, 99(16) : 163103.
  • 6CHEN J T, LI J, YANG J, et al. The hysteresis phenomenon of the field emission from the graphene film[J]. Applied Physics Letters, 2011, 99(17) : 173104.
  • 7ZHANG Y, DU J L, TANG S, et al. Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology[J]. Nanotechnology, 2012, 23 (1) : 015202.
  • 8LI L J, YANG T Z, LIU F, et al. Controlled synthesis of large-scale, uniform, vertically standing graphene for high- performance field emitters[J]. Advanced Materials, 2013, 25(2) : 250-255.
  • 9WU C X, LI F S, ZHANG Y G, etal. Improving the field emission of graphene by depositing zinc oxide nanorods on its surfaee[J]. Carbon, 2012, 50(10): 3622-3626.
  • 10LI X S, CAI W W, COLOMBO L G, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters, 2009, 9(12) : 4268-4272.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部