期刊文献+

在非对称光腔中利用CRIB技术进行光量子态存储 被引量:1

Quantum Memory with CRIB in an Asymmetric Optical Cavity
下载PDF
导出
摘要 本文提出了一个在光腔中利用可控逆非均匀展宽技术实现高效的量子存储方案.当光场在光腔中每次往返的吸收与透射到光腔中光场强度完全一样时(阻抗匹配条件),发现进入光腔中的光场可以完全被非均匀展宽原子系综吸收.通过计算得到无论是向前读取还是向后读取的方案,量子存储效率在光深度很小时都可以达到1.若没有光腔100%的存储效率仅仅只有在光深度无穷大时才能得到.在光深度很小时就能达到高效的量子存储在实验上非常容易实现.因此该方案为实验上实现高效的量子存储提供一个确实可行的方法. We propose an efficient quantum memory scheme with controlled reversible inhomogeneous broadening in an optical cavity. When the absorption per cavity round trip exactly matches the transmission of the coupling mirror (impedance matching condition), we show that the input light field can be completely absorbed by an inhomogeneous broadening atomic ensemble. From calculation we obtain that either a forward or a backward retrieval process the quantum memory efficiency can reach unity even for a small optical depth of the atomic system. If there is no cavity, 100~//00 efficiency is obtained only for extremely large optical depth. A high efficiency for the quantum memory at a small optical depth is easily achieved in practice. Therefore our proposal offers promising possibilities for the practical realization of high quantum memory efficiency.
出处 《光子学报》 EI CAS CSCD 北大核心 2013年第6期727-731,共5页 Acta Photonica Sinica
基金 国家自然科学基金(No.11074190) 浙江省自然科学基金(Nos.Y6090529 LY12A05001) 浙江省教育厅基金(No.Y201120838)资助
关键词 光量子态存储 CRIB技术 阻抗匹配 Quantum memory Controlled reversible inhomogeneous broadening Impedance matching
  • 相关文献

参考文献27

  • 1LVOVSKY A I, SANDERS B C, TITTEL W. Optical quantum memory[J]. Nature Photonics, 2009, 3(12): 706-714.
  • 2TITTEL W, AFZELIUS M, CHANELIERE T, et al. Photon-echo quantum memorary in solid state systems[J]. Laser Photonics Reviews, 2010, 4(2): 244-267.
  • 3KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum memory with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1): 135.
  • 4BRIEGEL H J, DVR W, CIRAC J I, et al. Quantum repeaters: the role of imperfect local operations in quantum communication[J]. Physical Review Letters, 1998, 81(4): 5932-5935.
  • 5JULSGAARD B, SHERSON J, CIRAC J I, et al. Experimental demonstration of quantum memory for light[J]. Nature, 2004, 432(7016): 482-486.
  • 6REIM K F, MICHELBERGER P, LEE K C, et al. Single-photon-level quantum memory at room temperature[J]. Physical Review Letters, 2011, 107(4): 53603.
  • 7EISAMAN M, ANDRé A, MASSOU F, et al. Electromagnetically induced transparency with tunable single-photon pulses[J]. Nature, 2005, 438(7069): 837-841.
  • 8NOVIKOVA I, GORSHKOV A V, PHILLIPS D F, et al. Optimal control of light pulse storage and retrieval[J]. Physical Review Letters, 2007, 98(4): 243602.
  • 9CHOI K S, DENG H, LAURAT J, et al. Mapping photonic entanglement into and out of a quantum memory[J]. Nature, 2008, 452(7183): 67-71.
  • 10APPEL J, FIGUEROA E, KORYSTOV D, et al. Quantum memory for squeezed light[J]. Physical Review Letters, 2008, 100(9): 093602.

二级参考文献17

  • 1王维江,周建英,肖万能.光在一维周期结构中的分布和局域化[J].光子学报,2005,34(7):1086-1089. 被引量:20
  • 2吴佳文,程静,余向阳,周建英.飞秒脉冲在共振介质中长距离演化过程研究[J].光学学报,2005,25(9):1265-1270. 被引量:3
  • 3郭莹莹,余向阳.光学Bloch方程的数值解法[J].中山大学学报(自然科学版),2005,44(5):108-110. 被引量:12
  • 4ALLEN L, EBERLY J H. Optical resonance and two-level atoms[M]. New York: Dover, 1987.
  • 5McCALL S L, HAHN E L. Self-induced transparency[J]. Phys Rev, 1969,183 (2) : 457-485.
  • 6ALHASAN A M, FIUTAK J, MIKLASZEWSKI W. The influence of the atomic relaxation on the resonant propagation of short light pulses[J]. Z Phys B, 1992,88: 349-358.
  • 7MIKLASZEWSKI W, FIUTAK J. The effect of the homogeneous broadening on propagation of the light pulses [J]. Z Phys B,1994,93:491-499.
  • 8MIKLASZEWSKI W. Near resonant propagation of light pulse in homogeneous broadening two level medium[J]. JOSA B, 1995,12(10) :1909-1917.
  • 9SCHUPPER N, FRIEDMANN H, MATUSOVSKY M, et al. Propagation of high-intensity short resonant pulses in inhomogeneous broadening media [J]. JOSA B, 1999,16 (7) : 1127-1134.
  • 10JOHN H. MATHEWS, KURTIS D. FINK, numerical methods using MATLAB[M]. CHEN Yu, ZHOU Lu, QIAN Fang, et al. transl. 3rd ed. Beijing: Publishing House of Electronics Industry, 2005 : 340-345.

共引文献6

同被引文献17

  • 1LANZAGORTA M.,量子雷达[M].北京:电子工业出版社,2013.
  • 2LLOYD S. Enhanced sensitivity of photodetection via quantum illumination[J]. Science,2008,321(5895) : 1463-1465.
  • 3LI Z G, FEI S M, WANG Z D, et al. Evolution equation of entanglement for bipartite systems[J]. Physical Review A, 2009, 79(2): 024303.
  • 4ABLIZ A, GAO H J, XIE X C, etal. Entanglement control in an anisotropic two-qubit Heisenberg XYZ model with external magnetic fields[J]. Physical Review A, 2006, 74(5) : 052105.
  • 5YIN Juan, REN Ji-guang, LU He, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature, 2012, 498(7410) : 185-188.
  • 6HU Xue-yuan, FAN Heng, ZHOU Duan-lu, et al. Necessary and sufficient conditions for local creation of quantum correlation[J]. Physical Review A, 2012, 85 (3) :032102.
  • 7SHABIR B, SAIKAT G, CHRISTIAN W, etal. Microwave quantum illumination[J]. Physical Review Letters, 2015, 114(8): 080503.
  • 8MA X S, HERBST T, SCHEIDL T, et al. Quantum teleportation over 143 kilometres using active feed-forward [J]. Nature, 2012, 489(7415): 269-273.
  • 9SMITH A J F. Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement[J]. SPIE Defense, Security, and Sensing, 2009, 7342(2): 457-457.
  • 10裴昌幸,阎毅,刘丹,韩宝彬,赵楠.一种基于纠缠态的量子中继通信系统[J].光子学报,2008,37(12):2422-2426. 被引量:25

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部