摘要
Polymers exhibit extended structures at high temperatures or in good solvents and collapsed configurations at low temperatures or in poor solvents. This fundamental property is crucial to the design of materials, and indeed has been extensively studied in recent years. In this paper, the collapse of polyethylene rings on an attractive surface was investigated by using molecular dynamics simulations. It is found that the collapse of ring chains on the attractive surface is of distinct difference from their free counterparts, where the collapse becomes more continuous and a one-stage instead of two-stage collapse can be identified by the specific heat. Some hairpin-like crystal structures are found at low temperatures, which are induced by the adsorption interaction of polymer-surface. For a given chain length, the results were further compared with those of the adsorbed linear chains. Due to the topological constraint of ring chains, the number of hairpin structures is clearly less than that of the linear chains. These numerical simulations may provide some new insights into the folding of ring polymers under adsorption interactions.
Polymers exhibit extended structures at high temperatures or in good solvents and collapsed configurations at low temperatures or in poor solvents. This fundamental property is crucial to the design of materials, and indeed has been extensively studied in recent years. In this paper, the collapse of polyethylene rings on an attractive surface was investigated by using molecular dynamics simulations. It is found that the collapse of ring chains on the attractive surface is of distinct difference from their free counterparts, where the collapse becomes more continuous and a one-stage instead of two-stage collapse can be identified by the specific heat. Some hairpin-like crystal structures are found at low temperatures, which are induced by the adsorption interaction of polymer-surface. For a given chain length, the results were further compared with those of the adsorbed linear chains. Due to the topological constraint of ring chains, the number of hairpin structures is clearly less than that of the linear chains. These numerical simulations may provide some new insights into the folding of ring polymers under adsorption interactions.
基金
financially supported by the National Natural Science Foundation of China(Nos.21204093,21174154,20874110)