摘要
The crystallization behavior of poly(ethylene adipate) (PEA) on highly oriented high-density polyethylene (PE) substrate both from solution and isotropic melt was studied by means of optical microscopy, differential scanning calorimetry, atomic force microscopy and electron diffraction. The results show that the PE influences the crystallization of PEA strongly, which results in an epitaxial growth of PEA with well ordered structure. At the boundary of the PE substrate, a transcrystalline PEA layer is observed. Fine structural observation illustrates that the PEA grows on the PE substrate in edge- on lamellae with fixed orientation. Electron diffraction demonstrates that the epitaxial organization of PEA on PE occurs with both polymer chains parallel, which leads to the (00l) PEA diffractions inclined ±23.5° to the chain direction of PE crystals. Combining the real space morphological observation and electron diffraction results, it is concluded that the epitaxial PEA edge-on lamellae are folded in the {00l} lattice planes.
The crystallization behavior of poly(ethylene adipate) (PEA) on highly oriented high-density polyethylene (PE) substrate both from solution and isotropic melt was studied by means of optical microscopy, differential scanning calorimetry, atomic force microscopy and electron diffraction. The results show that the PE influences the crystallization of PEA strongly, which results in an epitaxial growth of PEA with well ordered structure. At the boundary of the PE substrate, a transcrystalline PEA layer is observed. Fine structural observation illustrates that the PEA grows on the PE substrate in edge- on lamellae with fixed orientation. Electron diffraction demonstrates that the epitaxial organization of PEA on PE occurs with both polymer chains parallel, which leads to the (00l) PEA diffractions inclined ±23.5° to the chain direction of PE crystals. Combining the real space morphological observation and electron diffraction results, it is concluded that the epitaxial PEA edge-on lamellae are folded in the {00l} lattice planes.
基金
financially supported by the National Natural Science Foundation of China(Nos.50833006,21274009,21204018,51221002and50973008)