期刊文献+

星际C_(60) 被引量:2

Interstellar C_(60)
原文传递
导出
摘要 C60的发现起源于人们对星际尘埃的探索,肇始于1985年由Kroto等人首次在实验室合成,25年后最终于2010年在星际空间被探测到.近几年天文工作者在多种星周、星际环境观测到C60.本文综述了与天文观测和理论密切相关的C60的有关物理性质;介绍了C60在星际空间中的观测特性;最后讨论了C60在星际空间的形成与激发机制. Fullerenes are cage-like molecules of pure carbon, such as C60, C70, C76, and C84. C60, also known as buckminster- Irene, is the most stable fullerene and has a soccer-ball like structure. The presence of fullerenes in space has been suggested and observationally explored since their first synthesis in the laboratory in 1985 by Harry Kroto and his colleagues which earned them the 1996 Nobel prize in chemistry. C60 (as well as C7o) has recently been detected in reflection nebulae, post-asymptotic giant branch (AGB) stars, pre-planetary nebulae, planetary nebulae, Herbig Ae/Be stars, and young stellar objects through their characteristic infrared emission bands. The formation of C6o in interstellar and circumstellar environments is not firmly established. Experimental studies have shown that C60 can be made by gas-phase condensation (e.g. through vaporization of graphite) in a hydrogen-poor environment. In view of the simultaneous detection of C6o and polycyclic aromatic hydrocarbon (PAH) molecules in hydrogen-rich interstellar and circumstellar regions, it has also been suggested that C60 could be generated by the decomposition of hydrogenated amorphous carbon, or the destruction of PAHs, both induced by shocks and/or ultraviolet photoprocessing. The phase (gas or solid) and excitation mechanism of C60 in interstellar and circumstellar conditions are also hotly debated in the literature. One model suggests that C60 is attached to dust and emits in solid-phase at the equilibrium temperature of the dust. Another model suggests that C60 is stochastically excited by ultraviolet photons and emits in the gas-phase. We prefer the latter model as in interstellar and circumstellar conditions the energy content of a C6o molecule is often smaller than the energy of a single starlight photon and C60 is expected to undergo stochastical heating.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第7期821-832,共12页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:11173019) NSF AST-1109039 NNX13AE63G
关键词 C60 星际介质 星际尘埃 红外辐射 C60 interstellar medium interstellar dust infrared radiation
  • 相关文献

参考文献4

二级参考文献157

  • 1陆玉峻,刘建东,杨冬梅.C_(60)及其它富勒烯的应用前景[J].炭素,1994(3):32-36. 被引量:1
  • 2Wang Y. Photoconductivity of fullerenedoped polymers[J]. Nature, 1992, 356(3): 585-587.
  • 3Wang Y, Cheng L T. Nonlinear optical properties of fullerences and charge-transfer complexes of fullerences[J]. J Phys Chem, 1992, 96(4): 1530-1532.
  • 4Priyadarsini K I, Mohan H, Tyagi A K, et al.Inclusion complex of τ-cyclodextrin-C60: Formation,characterization, and photophysical properties in agueous solutions[J]. J Phys Chem, 1994, 98(17):4756-4759.
  • 5Kost A, Tutt L, Klein M B, et al. Optical limiting with opt C60 in polymethyl methacrylate [J]. Opt Lett, 1993, 18(5): 334-336.
  • 6Ma G B, Yang Y H, Chen G H. Anomalous photoluminescence from C60/polymethyl methacrylate films[J]. Mater Lett, 1998, 34: 377-382.
  • 7Li Y L, Chen G H, Zou Y J, et al. Raman study of C60/polymethyl methacylate film [J]. Materials Science and Engineering B, 2000, 78: 148-150.
  • 8Kratschmer W, Lamb L D, Fostiropoulos K, et al.Solid C60: A new form of carbon[J]. Nature, 1990,347: 354-358.
  • 9Serkowski K. In: Greenberg J M, van de Hulst H C eds. IAU Syrup. No. 52, Interstellar Dust and Related Topics, Dordrecht: Reidel, 1973:145
  • 10Wolff M J, Clayton G C, Kim S H et al. ApJ, 1997, 478:395

共引文献15

同被引文献58

  • 1XIANG FuYuan1,2,LIANG ShunLin2 & LI AiGen2,3 1 Faculty of Materials,Photoelectronics and Physics,Xiangtan University,Xiangtan 411105,China,2 Department of Physics and Astronomy,University of Missouri,Columbia,MO 65211,USA,3 Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210008,China.Diffuse interstellar absorption bands[J].Science China(Physics,Mechanics & Astronomy),2009,52(4):489-501. 被引量:1
  • 2Coustenis A,Salama A,Schulz B,et al.Titan's atmosphere from ISO mid-infrared spectroscopy.ICARUS,2003,16: 383-403.
  • 3Niemann H B,Atreya S K,Bauer S J,et al.The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe.Nature,2010,438: 779-784.
  • 4Sagan C,Khare B N,Lewis J S.Organic Matter in the Saturn System.In: Gehrels T,Matthews M,eds.Tucson: Saturn University Arizona Press,1984.788-810.
  • 5Khare B N,Sagan C,Arakawa E T,et al.Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft X-ray to microwave frequencies.ICARUS,1984,60: 127-137.
  • 6Sagan C,Khare B N,Thompson W R,et al.Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter.Astrophys J,1993,41: 399-405.
  • 7Thompson W R,Henry T J,Schwartz J M,et al.Plasma discharge in N2 + CH4 at low pressures: Experimental results and applications to Titan.ICARUS,1991,90: 57-73.
  • 8Waite J H,Young D T,Cravens T E,et al.The process of tholin formation in Titan's upper atmosphere.Science,2007,316: 870-875.
  • 9Vuitton V,Yelle R V,Cui J.Formation and distribution of benzene on Titan.J Geophys Res,2008,113: E05007.
  • 10Wilson E H,Atreya S K,Coustenis A.Mechanisms for the formation of benzene in the atmosphere of Titan.J Geophys Res,2003,108: 8.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部