期刊文献+

基于随机矩阵理论的Markowitz组合投资模型 被引量:9

Markowitz Portfolio Model Based on Random Matrix Theory
下载PDF
导出
摘要 通过随机矩阵方法识别、消除极端或非无关抽样样本,提高Markowitz模型的参数估计精度,改进应用Markowitz模型的效果;同时,针对抽样不足的情况,使用Bootstrap方法较好地解决了该问题. Markowitz's mean-variances model in this paper is improved,and the random matrix theory is used that can identify extreme sampling data and relevance data to get rid of those data such that more accurate estimate of mean and variance can be gotten.Then Bootstrap method to solve the problem of insufficient sample is used.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期293-297,共5页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11071158)
关键词 Markowitz组合投资模型 随机矩阵理论 BOOTSTRAP方法 Markowitz portfolio model random matrix theory(RMT) Bootstrap method
  • 相关文献

参考文献9

二级参考文献12

  • 1王汉兴,胡细,方建超,贾维嘉.马氏模型下移动自组网随选型路由协议特性分析[J].应用数学和力学,2007,28(1):114-126. 被引量:4
  • 2唐晓清,陶剑,谭明纯.毒性评价的逐步置信方法[J].邵阳学院学报(自然科学版),2007,4(1):17-21. 被引量:3
  • 3Jian Tao,Ning-Zhong Shi, Sik-Yum Lee. Drug Risk Assessment with Determining the Number of Sub-populations Under Finite Mixture Normal Models[J]. Computing Statisties and Data Analysis, 2004,46 : 611 -- 667.
  • 4Tan M, Tian G. L. , Fang H. B. Estimationg Restricted Normal Means Using the EM-type Algorithms and IBF Sampling [ M]. Development of Modern Statistics and Related Topics World Scientific, Publishing, New Jersey, 2003 : 53-- 73.
  • 5王桂松.等线性模型引论[M].科学出版社,2004.
  • 6张尧庭,方开泰.多元统计分析[M].科学出版社,2003.
  • 7M Wohr,A Borta,RK Schwarting.Overt behavior and ultrasonic vocalization in a fear conditioning paradigm: a dose–response study in the rat. Neurobiology of Learning . 2005
  • 8J O’Quigley,M Pepe,L Fisher.Continual reassessment method: a practical design for phase I clinical trials. Biometrics . 1990
  • 9Jian Tao,Ning-Zhong Shi,Jian-Hua Guo,et al.Stepwise procedures for the identification of minimum effective dose with unknown variances. Statistics and Probability Letters . 2002
  • 10刘念祖,高光伟.基于缩边递推法的图色多项式求解算法设计与分析[J].上海第二工业大学学报,2009,26(4):291-294. 被引量:1

共引文献14

同被引文献55

  • 1舒海翅,王新洲,花向红,田玉刚.模糊ISODATA中分类数C的确定[J].模糊系统与数学,2004,18(z1):318-322. 被引量:2
  • 2沈小玲,侯耀平.最大度和次大度相等的双星树由它的Laplacian谱确定[J].湖南师范大学自然科学学报,2007,30(3):22-25. 被引量:2
  • 3TUT'FE W T. Graph theory[ M ]. Cambridge: Cambridge University Press, 2001.
  • 4DOHMEN K, PONITZ A, TIrI:MANN P. A new two-variable generalization of the chromatic polynomial[ J ]. Discrete Math The- or Comput Sci, 2003,6(2) :69-89.
  • 5WELSH D. The Tutte polynomial [ J ]. Random Structures Algorithms, 1999,15 ( 3 -4 ) : 210 -228.
  • 6AVERBOUCH I, MAKOWSKY J. The complexity of multivariate matching polynomials, January 2007. Preprint.
  • 7AIVALIOTIS M,GORDON G,GRAVEMAN W. When bad things happen to good trees[J]. Graph Theory, 2001,37:79-99.
  • 8BAILY A,GORDON G,PATTON M,et al. Expected value expansions in rooted graphs [J]. Discrete Applied Mathematics, 2003,128 : 555-571.
  • 9TANG X,TAN M. Estimation of simple constrained parameters with EM method[J]. J Hunan Institute of Engineering,2010, 20(1) :61-64.
  • 10TANG X. New expected value expansions of rooted graphs[J]. Acta Mathematicae Applicatae Sinica:English Series,2015,31 (1) :1-8.

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部