期刊文献+

二元齐次矩阵Padé-型逼近的计算

Computation of Bivariate Homogeneous Matrix Pade-Type Approximation
下载PDF
导出
摘要 二元齐次矩阵Pade-型逼近的计算比较复杂,而通过适当的变量代换,可以将二元齐次矩阵形式幂级数转化为一元含参数形式的矩阵形式幂级数,从而给出二元齐次矩阵Pade-型逼近构造性的定义.为提高二元齐次矩阵Pade-型逼近的逼近解精度,借助于误差公式推导出基于矩阵EMN的二元齐次矩阵正交多项式Pade-型逼近的分子和分母行列式表达式;为避免计算高阶行列式,建立了一种Sylvester-型递推算法.最后,通过数值算例验证了该算法的有效性. With appropriate variable replacement,the bivariate homogeneous matrix formal power series is transformed to univariate matrix formal power series with parameters.The bivariate homogeneous matrix Pade-type approximation was defined.To improve computation accuracy,using an error formula,the numerator and denominator in the determinant expressions of bivariate homogeneous matrix orthogonal polynomial Pade-type approximation are given based on the matrix Emn- A Sylvester-type recursive algorithm is presented to avoid computation of high degree determinants.A numerical example shows effectiveness of the algorithm.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期303-307,共5页 Journal of Shanghai University:Natural Science Edition
基金 上海市重点学科建设资助项目(S30104)
关键词 Pade-型逼近 矩阵形式幂级数 二元齐次 正交多项式 递推算法 Pade-type approximation matrix formal power series bivariate homogeneous orthogonal polynomial iterative algorithm
  • 相关文献

参考文献8

  • 1BREZINSKI C.Padé-type approximation and general orthogonal polynomials[M].Basel:Birkh(a)user,1980.
  • 2DRAUX A.Approximants de type Padé et de Padé[M].Lille:Universié des Science et Technologies de Lille,1983:1-89.
  • 3GU C Q.Matrix Padé-type approximant and directional matrix Padé-type approximant in the inner product space[J].J Comput Appl Math,2004,164/165:365-385.
  • 4ZHENG C D.Generalized homogeneous multivariate matrix Padé-type approximants and Padé-type approximants[J].IEEE Transactions on Automatic Control,2007,52(11):2160-2165.
  • 5TAO Y T,GU C Q.A two-dimensional matrix Padétype approximant in the inner product space[J].J Comput Appl Math,2009,231(2):680-695.
  • 6BENOUAHMANE B,CUYT A.Multivariate orthogonal polynomials,homogeneous Padé approximants and Gaussian cubature[J].J Numerical Algorithms,2000,24(1/2):1-15.
  • 7潘宝珍,张贻帅,潘鹿鹿.二元齐次矩阵Pad-型逼近及误差公式[J].应用数学与计算数学学报,2012,26(1):113-120. 被引量:1
  • 8BAKER G,GRAVES-MORRIS P.Padé approximants[M].2nd ed.New York:Cambridge University Press,1997.

二级参考文献8

  • 1Brezinski C.Pade-type Approximation and General Orthogonal Polynomials[M].Basel:Birkh(a|¨)user, 1980.
  • 2Draux A.Approximants de Type Pade et de Pade[M].Lille:Universie des Science et Technologies de Lille,1983:1-89.
  • 3Salam A.Vector Pade-type approximants and vector Pade approximants[J].Journal of Approximation Theory,1999,97:92-112.
  • 4Gu C Q.Matrix Pade-type approximant and directional matrix Pade-type approximant in the inner product space[J].Journal of Computational and Applied Mathematics,2004,164-165: 365-385.
  • 5Zheng C D.Generalized homogeneous multivariate matrix Pade-type approximants and Padetype approximants[J].Journal of Transactions on Automatic Control,2007,52(11):2160- 2165.
  • 6Tao Y T,Gu C Q.A two-dimensional matrix Pade-type approximation in the inner product space[J].Journal of Computational and Applied Mathematics,2009,231(2):680-695.
  • 7Benouahmane B,Cuyt A,Multivariate orthogonal polynomials,homogeneous Pade approximants and Gaussian cubature[J].Journal of Numerical Algorithms,2000,24(1-2):1-15.
  • 8An Y,Gu C Q.Model reduction for large-scale dynamical systems via equality constrained least squares[J].Journal of Computational and Applied Mathematics,2010,234(8):2420- 2431.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部