期刊文献+

同轴两个气泡融合特性的数值研究 被引量:8

Numerical Investigation on Coaxial Coalescence of Two Gas Bubbles
下载PDF
导出
摘要 为了进一步研究气泡融合特性以及开发高效的界面追踪程序,以PLIC界面重构技术为基础,采用不分裂算法计算了目标网格向周围26个网格的输运流量;采用统一的表达式计算输运流量,大大降低了程序编写的难度。将PLIC算法与气液两相流动控制方程相结合,数值计算了直径为0.8~14mm的单个气泡的最终运动速度,模拟结果与文献中的实验结果吻合良好。研究了同轴两个气泡的融合过程,发现表面张力很大时,两个气泡近似独立运动,不发生融合;表面张力很小时,气泡容易发生破碎;气泡发生严重破碎时,尾部气泡会从顶部气泡的轴心穿过;液体黏度与表面张力对气泡融合时间的影响不是单调的。 To further study bubble coalescence and develop a highly efficient tracking interface program,an unsplit algorithm based on the PLIC interface reconstruction algorithm was applied to precisely calculate the fluid transport from one cell to its neighboring 26 cells,and the fluid transport of each cell was calculated using a unified expression which greatly reduces the programming difficulty and improves the calculation accuracy.The Navier-Stokes equations for gas-liquid two-phase flow were solved by combining an advection equation for liquid volume fraction to simulate the rise of the single bubble.The terminal velocities obtained by the numerical simulation for the single bubble with the diameter of 0.8-14 mm were in good agreement with the experimental data from literature.The co-axial coalescence of two gas bubbles in the initially quiescent liquid was then simulated by the unsplit algorithm.The numerical results show that when the surface tension is very high,the two bubbles rise and deform independently.The bubbles tend to break up when the surface tension is very small,and when the bubble breakup is serious,the following bubble would pass through the leading bubble.Additionally,the effect of liquid viscosity and surface tension on coalescence time is non-monotonous.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第7期1-6,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51176153)
关键词 不分裂算法 数值模拟 气泡融合 融合时间 unsplit algorithm numerical simulation bubble shape bubble coalescence
  • 相关文献

参考文献16

  • 1WU M M, GHARIB M. Experimental studies on the shape and path of small air bubbles rising in clean wa- ter [J]. Physics of Fluids, 2002, 14(7): 49-52.
  • 2何丹,李彦鹏,刘艳艳.初始形状对浮升气泡动力特性的影响[J].西安交通大学学报,2011,45(1):43-47. 被引量:11
  • 3INAMURO T, OGATA T, OGINO F. Numerical simu- lation of bubble flows by the lattice Boltzmann method [J]. FGCS, 2004, 20(6): 959-964.
  • 4YU Z, FAN L S. Direct simulation of the buoyant rise of bubbles in infinite liquid using level set method [J]. Canadian Journal of Chemical Engineering, 2008, 86 (6): 267-275.
  • 5VAN SINT ANNALAND M, DEEN N G, KUIPERS J A M. Numerical simulation of gas bubbles behaviors using a three-dimensional volume of fluid method [J]. Chemical Engineering Science, 2005, 60 (11) : 2999- 3011.
  • 6PU L, LI H X, LV X. Numerical simulation of bubble dynamics in microgravity [J]. Microgravity Sci Techn- ol, 2008, 20(3/4): 247-251.
  • 7李彦鹏,张乾隆,白博峰.竖直通道内相邻气泡对上升的直接数值模拟[J].热能动力工程,2007,22(4):375-379. 被引量:7
  • 8KOEBE M, BOTHE D, PRUESS J, et al. 3D direct numerical simulation of air bubbles in water at high Reynolds number [C]//Proceeding of the 2002 ASME Fluids Engineering Division Summer Meeting. New York, USA: ASME, 2002: 14-18.
  • 9胡影影,朱克勤,席葆树.计算体积分数函数的Youngs不分裂算法[J].清华大学学报(自然科学版),2002,42(2):232-234. 被引量:6
  • 10刘春,马天宝,宁建国.Euler方法中的不分裂输运算法[J].北京理工大学学报,2008,28(10):847-850. 被引量:1

二级参考文献29

  • 1NING Jianguo1 & CHEN Longwei1,2 1. National Key Laboratory of Protection and Control of Explosive Disaster, Beijing Institute of Technology, Beijing 100081, China,2. The Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China Correspondence should be addressed to Ning Jianguo.Fuzzy interface treatment in Eulerian method[J].Science China(Technological Sciences),2004,47(5):550-568. 被引量:40
  • 2沈玉玲,宁建国.挡墙形状对二维爆炸场影响的数值模拟研究[J].Journal of Beijing Institute of Technology,2001,10(1):39-44. 被引量:5
  • 3李彦鹏,白博峰.气泡从浸没孔中生成与上升的数值模拟[J].水动力学研究与进展(A辑),2006,21(5):660-666. 被引量:15
  • 4陈斌.高粘度流体中上升气泡的直接数值模拟[J].工程热物理学报,2006,27(2):255-258. 被引量:11
  • 5[1]Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow [J].Annu Rev Fluid Mech, 1999, 31: 567-603.
  • 6[2]Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. J Comput Phys, 1981, 39: 201-225.
  • 7[3]Rider W J, Kothe D B. Reconstructing volume tracking [J]. J Comput Phys, 1998, 141: 112-152.
  • 8[4]Rudman M. Volume-tracking methods for interfacial flow calculations [J]. Int J for Num Methods in Fluids, 1997, 24: 671-691.
  • 9BHAGA D, WEBER M E. Bubbles in viscous liquids: shapes, wakes, and velocities [J]. J Fluid Mech, 1981, 105: 61-85.
  • 10SANADA T, SUGIHARA K, SHIROTA M, et al. Motion and drag of a single bubble in super-purified water [J]. Fluid Dynamics Research, 2008, 40(7/8): 534-545.

共引文献20

同被引文献88

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部