期刊文献+

H^1(R^N)上带限制的椭圆特征问题的三个解 被引量:4

Three Solutions of an Elliptic Eigenvalue Problem with Constraint in H^1(R^N)
下载PDF
导出
摘要 用变分方法证明H^1(R^N)上一个带限制的半线性椭圆特征问题解的存在性.所获得的三个解:一个是正解,一个是负解.对于第三个解,本文只证明了它的存在性,而没有确定它是正解,负解,还是变号解. This paper proves the existence of three solutions of a semilinear elliptic eigen- value problem in H1 (RN) with constraint by using variational methods. One is a positive solution; anther one is a negative solution; the third one is not fixed.
作者 刘竞坤
出处 《数学研究》 CSCD 2013年第2期160-166,共7页 Journal of Mathematical Study
关键词 椭圆特征问题 临界点理论 多解 Elliptic eigenvalue problem Critical point theory Multiple solutions
  • 相关文献

参考文献13

  • 1Zeidler E. The Ljusternik-Schnirelmann theory for indefinite and not necessarily odd nonlinear operators and its applications. Nonl Anal T M A, 1980, 4: 451-489.
  • 2Zeidler E. Nonlinear Functional Analysis and Its Applications(III). New York: Springer Verlag, 1985.
  • 3Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS 65. Providence: Amer Math Soc, 1986.
  • 4Li Y Q. Three solutions of a semilinear elliptic eigenvalue problem. Acta Math Sinica, 1995, 11: 142-152.
  • 5Tehrani H T. HI versus C1 local minimizers on manifolds. Nonlinear Analysis, T M A, 1996, 26: 1491-1509.
  • 6Li Y Q, Liu Z L. Multiple and sign changing solutions of an elliptic eigenvalue problem with constraint. Science in China, Series A, 2001, 44, 1: 48-57.
  • 7Wang Z Q. On a semilinear elliptic equation. Ann lnst H Poincare Analyse nonlineare, 1991, 5: 43-57.
  • 8Chang K C. Infinite Dimensional Morse Theory and Multiple Solution Problems. Boston: Birkhauser, 1993.
  • 9Chang K C. A variant of mountain pass lemma. Scientia Sinica, 1983,26: 1241-1255.
  • 10Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm Partial Diff Eq, 1995, 20: 1725-1741.

同被引文献13

  • 1KRYSZEWSKI W, SZULKIN A. Generalized linking theorem with an application to semilinear Schrodinger equation. Advdiff eq, 1998, 3(3) : 441-472.
  • 2LIU J K, CHEN J Q. Sign changing solutions and multiple solutions of an elliptic eigenvalue problem with constraint in//' ( RN ) ? Computers and mathematics with applications, 2010,59(8) : 3005-3013. 019.
  • 3REED M,SIMON B. Methods of modem mathematical physics IV. New York: Academic Press,1978 : 309-310.
  • 4ZELATI V C,RABINOWITZ P H. Homoclinic type solutions for a semilinear elliptic PDE on R' Comm pure appl math,1992(45) : 1217-1269.
  • 5MAWHIN J, WILLEM M. Critical point theory and hamiltonian system. New York: Springer-Verlag, 1989: 175-176.
  • 6GILBARG D, THUDINGER N S. Elliptic partial differential equations of second order. New York: Springer-Verlag,1977: 32-35.
  • 7WILLEM M. Minimax theorems. Berlin: Birkhauser Boston Basel, 1996: 93-107.
  • 8RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations. Providence :Amer Math Soc, 1986 : 1-22.
  • 9姜兆敏.常微分方程初值问题的变分迭代算法[J].长春工业大学学报,2013,34(1):9-12. 被引量:3
  • 10刘竞坤.H^1(R^N)上一类半线性椭圆问题的正解与负解[J].集美大学学报(自然科学版),2016,21(3):228-233. 被引量:3

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部