摘要
研究了一类在污染环境下的具有脉冲输入和资源循环的Monod型恒化器模型,利用Floquet定理和脉冲微分方程解的比较定理,我们得出了系统的微生物灭绝周期解全局渐近稳定以及系统持久的充分条件.
In this paper, we investigate a Monod-type chemostat model with impulsive input and nutrient recycling in a polluted environment. By using the comparison theorem of impulsive differential equations and Floquet theory, we obtain the sufficient conditions for the global asymptotical stability of the microorganisms extinction periodic solution and the permanence of this system.
出处
《数学研究》
CSCD
2013年第2期194-205,共12页
Journal of Mathematical Study
关键词
恒化器
脉冲
全局渐近稳定性
持久性
Chemostat
Impulse
Global asymptotically stable
Permanence