期刊文献+

一种可探测新颖类别的数据流分类算法 被引量:2

A data streams classification algorithm for novel class detection
下载PDF
导出
摘要 针对可探测新颖类别的数据流分类算法不能处理混合属性且新颖类别探测准确率不高,引入VFDTc算法作为基分类器学习算法,并改进新颖类别探测方法以处理混合属性数据和提高新颖类别的探测准确率。实验结果表明,改进后的算法具有较高的分类模型学习效率、数据流分类精度和处理速率。 Data streams classification algorithm for novel class detection can not handle the mixing properties and novel class detection accuracy is not high. In order to accelerate the classification procedure, VFDTe algorithm is used to be the base learner. A modified clustering approach is appliecl to improve the accuracy of novel class detector and extend the domains to mixed attributes. The experimental results show that the improved algorithm achieves more advanced classification accuracy and processing speed.
出处 《桂林电子科技大学学报》 2013年第3期236-240,共5页 Journal of Guilin University of Electronic Technology
基金 广西可信软件重点实验室开放基金(kx201116) 广西教育厅科研项目(201204LX122)
关键词 数据流 新颖类别探测 数据挖掘 分类算法 data streams novel class detection data mining classification algorithm
  • 相关文献

参考文献10

  • 1Spinosa E J, de Leon F, Gama J. OLINDDA: A cluster- based approach for detecting novelty and concept drift in data streams [C]//Proceedings of SAC 2007. New York: ACM, 2007 : 448-452.
  • 2Masud M M, Gao Jing, Khan L, et al. Integrating novel class detection with classification for concept-drifting data streams [C]//Proceedings of ECML PKDD' 09: Volume Ⅱ. Berlin, Heidelberg: Springer-Verlag, 2009: 79-94.
  • 3Wang Haixun, Fan Wei, Yu P S, et al. Mining concept- drifting data streams using ensemble classifiers[C]// Proceedings of SIGKDD 2003. New York: ACM, 2003: 226-235.
  • 4Masud M M, Chcn Qing, Khan L, et al. Classification and adaptive novel class detection of feature-evolving data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2012,5 ( 99) : 1.
  • 5Gama J, Rocha R,Medas P. Accurate decision trees for mining high-speed data streams [C]//Proceedings of SIGKDD 2003. Washington D C : ACM, 2003,523-528.
  • 6Domingos P, Hulten G. Mining high-speed data streams [C]//Proceedings of the Sixth ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. Boston, Massachusetts : ACM, 2000 : 71-80.
  • 7Huang Zhexue. Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Da- ta Mining and Knowledge Discovery, 1998,2 (3) : 283- 304.
  • 8汪加才,朱艺华.模糊K-Prototypes算法中的加权指数研究[J].计算机应用,2005,25(2):348-351. 被引量:4
  • 9Arthur D,Vassilvitskii S. k-means+ + .- The advantages of careful seeding[C]//Proceedings of SODA'07. New Orleans,France: ACM/SIAM, 2007 : 1027-1035.
  • 10Masud M M,Gao Jing,Khan L,et aL Classification and novel eIass detection in concept-drifting data streams under time constraints [J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23 (6): 859- 874.

二级参考文献10

  • 1RUSPINI E. A new approach to clustering[ J]. Information and Control, 1969, 15:22 - 32.
  • 2BLAKE C, KEOGH E, MERZ C. UCI repository of machine learning database. 1998[ EB/OL]. http://www. ics. uci. edu/- mleam/ML-Respository. html, 2004.
  • 3JAIN A, DUBES R. Algorithm for clustering data[ M]. Prentice -Hall, 1988.
  • 4RUSPINI E. A new approach to clustering[ J]. Information & Control, 1969, 19:22 -32.
  • 5HUANG Z. Extensions to the k-means algorithm for clustering large data sets with categorical values[ J]. Data Mining Knowldge Discovery, 1998,2(3) :283 -304.
  • 6HUANG Z, NG M. A fuzzy k-modes algorithm for clustering categorical data[ J]. IEEE Transaction on fuzzy systems, 1999, 7(4) : 446 -452.
  • 7PAL N, BEZDEK J. On cluster validity for the fuzzy c-means model[ J]. IEEE Trans Fuzzy Systems, 1995, 3(3) :370 -379.
  • 8高新波,裴继红,谢维信.模糊c-均值聚类算法中加权指数m的研究[J].电子学报,2000,28(4):80-83. 被引量:158
  • 9陈宁,陈安,周龙骧.数值型和分类型混合数据的模糊K-Prototypes聚类算法(英文)[J].软件学报,2001,12(8):1107-1119. 被引量:47
  • 10于剑,程乾生.关于FCM算法中的权重指数m的一点注记[J].电子学报,2003,31(3):478-480. 被引量:23

共引文献3

同被引文献37

  • 1李秋洁,茅耀斌,叶曙光,王执铨.代价敏感Boosting算法研究[J].南京理工大学学报,2013,37(1):19-24. 被引量:3
  • 2王涛,李舟军,颜跃进,陈火旺.数据流挖掘分类技术综述[J].计算机研究与发展,2007,44(11):1809-1815. 被引量:41
  • 3Spinosa E J,de Leon F,Gama J.OLINDDA:a clusterbased approach for detecting novelty and concept drift in data streams[C]//Proceedings of SAC 2007.New York:ACM,2007:448-452.
  • 4Masud M M,Gao Jing,Khan L,et al.Integrating novel class detection with classification for concept-drifting data streams[C]//Proceedings of ECML PKDD'09:Volume II.Berlin:Springer-Verlag,2009:79-94.
  • 5Wang Haixun,Fan Wei,Philip S,et al.Mining conceptdrifting data streams using ensemble classifiers[C]//Proceedings of SIGKDD.New York:ACM,2003:226-235.
  • 6Masud M M,Chen Qing,Khan L,et al.Classification and adaptive novel class detection of feature-evolving data streams[J].IEEE Transactions on Knowledge and Data Engineering,2012,99(5):1484-1497.
  • 7Kuncheva L I.Classier ensembles for detecting concept change in streaming data:overview and perspectives[C]//Proceedings of the SW.Greece:ECAI,2008:5-9.
  • 8Gama J,Castillo G.Learning with Local Drift Detection[M]//Li X,Zaiane O R,Li Z H.Advaneed Data Mining and Applications:LNCS Volume 4093.Berlin:Springer,2006:42-55.
  • 9Arthur D,Vassilvitskii S.k-means++:the advantages of careful seeding[C]//Proceedings of SODA 07.New Orleans,France:ACM/SIAM,2007:1027-1035.
  • 10黄启春,刘仰光,何钦铭.基于支持向量机的增量式算法[J].浙江大学学报(工学版),2008,42(12):2121-2126. 被引量:3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部