期刊文献+

玉米ZmSCL7的克隆及功能研究 被引量:8

Cloning and Functional Study of ZmSCL7 in Zea mays
下载PDF
导出
摘要 【目的】对玉米SCARECROW-LIKE 7(SCL7)进行克隆与表达研究,了解该基因表达的分子机制及其应用。【方法】以玉米叶片总RNA为模板,根据同源克隆策略设计简并引物,利用RT-PCR结合RACE技术,获得ZmSCL7的全长cDNA序列。利用同源性比对进行序列分析,通过Northern杂交分析ZmSCL7在不同逆境胁迫下的表达特征,对转基因烟草进行Western blot分析,并测定最大光化学效率、叶绿素、丙二醛和脯氨酸含量验证该基因的抗盐功能。【结果】获得ZmSCL7全长cDNA序列1 653 bp,编码550个氨基酸。Northern杂交表明该基因在NaCl、H2O2和低温处理条件下上调表达,在ABA处理条件下下调表达。与对照相比,转ZmSCL7烟草在200 mmol.L-1NaCl时萌发受到较小抑制,且最大光化学效率、叶绿素和脯氨酸含量上升,丙二醛含量下降。【结论】ZmSCL7作为一个转录因子受多种逆境胁迫诱导,该基因的过量表达提高了烟草的抗盐性。 【Objective】The aim of this study is to clone SCARECROW-LIKE 7(SCL7)gene,to analyze its molecular mechanisms and promote their applications in breeding.【Method】 The total RNA from the leaves of tobacco was used as the template to design the degenerate primers based on homology cloning strategy,and then the full-length cDNA sequence of zmSCL7 was obtained through a combined reverse transcription-PCR(RT-PCR).Bioinformatics method was used to analyze the sequence characteristics of this gene.Northern blot was used to investigate the expression pattern.Western blot was used to investigate the transgenic analysis.Chlorophyll content,Fv/Fm,MDA and proline content were investigated for functional verification of salt resistance.【Result】The results indicated that cDNA of ZmSCL7 was 1 653 bp and contained a single open reading frame of 550 amino acid residues.Northern blot indicated that the mRNA accumulation of ZmSCL7 was induced by low temperatures,salt stress,abscisic acid(ABA) and H2O2.Additionally,compared with the control,transgenic ZmSCL7 tobacco,germination was inhibited less.Chlorophyll content,Fv/Fm,proline content increased and MDA content decreased.【Conclusion】ZmSCL7,a transcription factor,was induced by a variety of stress and could increase salt tolerance by overexpression in tobacco.
出处 《中国农业科学》 CAS CSCD 北大核心 2013年第12期2584-2591,共8页 Scientia Agricultura Sinica
基金 国家自然科学基金项目(30872004 31100452) 中央高校自主基金(0913-130480)
关键词 玉米 ZmSCL7 NORTHERN杂交 Western杂交 功能研究 Zea mays SCARECROW-LIKE genes4(SCL7) northern blot western blot functional study
  • 相关文献

参考文献28

  • 1Abba S, Ghignone S, Bonfante E A dehydration-inducible gene in the truffle tuber borchii identifies a novel group of dehydrins. BMC Genomics, 2006, 7: 39-54.
  • 2Mundy J, Chua N H. Abscisic acid and water-stress induce the expression of a novel rice gene. The EMBO Journal, 1988, 7: 2279-2286.
  • 3Bray E A. Molecular responses to water deficit. Plant Physiology, 1993, 103(4): 1035-1040.
  • 4Momma M, Kaneko S, Haraguchi K, Matsukura U. Peptide mapping and assessment of cryoprotective activity of 26/27 kDa dehydrin from soybean seeds. Bioscience Biotechnology and Biochemistry, 2003, 67: 1832-1835.
  • 5Dure L. A repeating 11-mer amino acid motif and plant desiccation. The Plant Journal, 1993, 3: 363-369.
  • 6Robertson M, Chandler P M. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Molecular Biology Reporter, 1994, 26: 805-816.
  • 7Soulages J L, Kim K, Arreee E L, Waiters C, Cushman J C. Conformation of a Group 2 late embryogenesis abundant protein from soybean: Evidence of poly (L-Proline)-type II structure. Plant Physiology, 2003, 131: 963-975.
  • 8Farquhar G D, Raschke K. On the resistance to transpiration of the sites of evaporation within the leaf. Plant Physiology, 1978, 61: 1000-1005.
  • 9Garay-Arroyo A, Colmenero-Flores J M, Garciarrubio A, Covarrubias A A. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biology Chemistry, 2000, 275: 5668-5674.
  • 10Oliver A E, Leprince O, Wolkers W F, Hincha D K, Heyer A G, Crowe J H. Non-disaccharide-based mechanisms of protection during drying.Cryobiology, 2001, 43: 151-167.

二级参考文献43

  • 1黎裕,王天宇,石云素,宋艳春.应用生理学方法和分子手段进行玉米抗旱育种[J].玉米科学,2004,12(2):16-20. 被引量:40
  • 2SILVERSTONE A L, CIAMPAGLIO C N, SUN T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway [ J ]. Plant Cell, 1998, 10:155-169.
  • 3HELARIUTTA Y, FUKAKI H, WYSOCKA-DILLER J, et al. The SH OR T-R O OT gene controls radial patterning of the Arabidopsis root through radial signaling [ J]. Cell, 2000, 101 : 555 -567.
  • 4TIAN C, WAN P, SUN S, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis [ J]. Plant Molecular Biology, 2004, 54: 519-532.
  • 5LEE M H, KIM B, SONG S K, et al. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana [ J]. Plant Mol Biol, 2008, 67: 659-670.
  • 6BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytocrome A signal transduction [J]. Genes Development, 2000, 14: 1269-1278.
  • 7TORRES-GALEA P, HUANG L F, CHUA N H, et al. The GRAS protein SCL13 is a positive regulator of phytochromedependent red light signaling, but can also modulate phytochrome A responses [J]. Mol Genet Genomics, 2006, 276: 13-30.
  • 8FODE B, SIEMSEN T, THUROW C, et al. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress inducible promoters [J]. The Plant Cell, 2008, 20: 3122-3135.
  • 9GALLAGHER K L, PAQUETTE A J, NAKAJIMA K, et al. Mechanisms regulating SHORT-ROOT intercellular movement [J]. CurrBiol, 2004, 14: 1847-1851.
  • 10BOLLE C. The role GRAS proteins in plant signal transduction and development [J]. Planta, 2004, 218: 683-692.

共引文献49

同被引文献35

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部