期刊文献+

静息态脑功能网络分析的假设驱动和数据驱动方法综述 被引量:3

Review of hypothesis driven and data driven methods for brain functional network analysis
下载PDF
导出
摘要 基于功能磁共振成像的研究已发现在脑区之间存在低频波动一致的脑功能网络。脑功能网络有助于认识脑功能和诊断神经精神疾病,而脑功能网络分析方法在其中具有重要地位。本文首先综述了假设驱动和数据驱动进行脑功能网络分析的两类方法,接着对常用的基于感兴趣区、基于体素、基于独立成分分析、基于主成分分析和基于聚类方法的原理、优缺点做了详细介绍,并着重阐述了最近提出的组信息指导的独立成分分析方法,及基于半监督学习技术的感兴趣区选择方法,最后对改进方向进行了展望。 The research of functional magnetic resonance imaging (fMRI) has revealed the coherent fluctuation of low frequency signals between anatomically separated brain regions, which indicates functional network. Brain functional networks help better understanding of brain function and diagnosis of mental disease, and methods for analyzing brain functional networks play an important role. The paper firstly reviews two categories of methods for functional networks analysis: hypothesis driven and data driven methods, and then presents the theory, advantages and shortcomings of the traditional methods,including region of interests (ROI) based method, voxel based method, independent component analysis (ICA), principal component analysis (PCA) and clustering method. Furthermore, the paper highlights the recently proposed group information guided ICA method and ROI selection method semi-supervised learning based Finally, future potential improvements of the methods are prospected .
出处 《北京生物医学工程》 2013年第3期307-311,329,共6页 Beijing Biomedical Engineering
基金 国家自然科学基金(61071192 61271357) 山西省自然科学基金(2009011020-2) 山西省高等学校优秀青年学术带头人支持计划 中北大学科学基金资助
关键词 脑功能网络 独立成分分析 聚类 组信息 半监督学习 brain functional network independent component analysis clustering group information semi-supervised learning
  • 相关文献

参考文献38

  • 1Margulies DS, Bottger J, Long X, et al. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity [J]. MAGMA,2010,23(5-6) :289-307.
  • 2Li KM,Guo L, Nie JX, et al. Review of methods for functional brain connectivity detection using fMRI [ J ]. Comput Med Imaging Graph, 2009,33 ( 2 ) : 131 - 139.
  • 3Friston KJ,Frith CD, Liddle PF, et al. Functional connectivity: the principal-component analysis of large (PET) data sets [ J ]. J Cereh Blood Flow Metab, 1993,13 ( 1 ) :5-14.
  • 4Worsley KJ, Chen JI, Lerch J, et al. Comparing functional connectivity via thresholding correlations and singular value decomposition [ J ]. Philosophical Transactions of the Royal Society B-Biological Sciences,2005,360( 1457 ) :913-920.
  • 5Biswal B, Yetkin FZ, Haughton VM, ct al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI [ J ]. Magn Reson Med, 1995,34 (4) :537- 541.
  • 6Maldjian JA,Laarienti [P.], Kraft RA,ct al. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets [ J ].Neuroimage,2003,19 ( 3 ) : 1233-1239.
  • 7Wang J, Wang L, Zang Y, et al. Parcellation-dependent small- world brain functional networks: a resting-state fMR1 study [ J]. Hum Brain Mapp,2009,30(5):1511-1523.
  • 8Geissler A, Lanzenbcrger R, Barth M, et al. Influence of fMRI smoothing procedures on replicability of fine scale motor localization [ J ]. Neuroimage ,2005,24 ( 2 ) : 323-331.
  • 9Zang Y,Jiang T, Lu Y,et al. Regional homogeneity approach to fMRI data analysis [ J ]. Neuroimage,2004,22 ( 1 ) :394-400.
  • 10Damaraju E,Phillips JR, Lowe JR, et al. Resting-state functional connectivity differences in premature children [ EB/J]. (2012- 12-13 ). htp ://www. frontiersin, org/systems neuroscience/lO. 3389/fnsys. 2010. 00023.

同被引文献36

  • 1Hutchison RM, Womelsdorf 丁, Gati JS, et al. Resting-state net-works show dynamic functional connectivity in awake humans and an-esthetized macaques. Hum Brain Mapp, 2013,34(9) :2154-2177.
  • 2Allen EA, Damaraju E, Plis SM, et al. Tracking whole-brainconnectivity dynamics in the resting state. Cereb Cortex, 2014,24(3):663-676.
  • 3Zalesky A, Fornito A, Cocchi L, et al. Time-resolved resting-state brain networks. Proc Natl Acad Sci USA, 2014 , 111 (28):10341-10346.
  • 4Calhoun VD, Miller R, Pearlson G, et al. The chronnectome:Time-varying connectivity networks as the next frontier in fMRIdata discovery. Neuron, 2014, 84(2) :262-274.
  • 5Liao W, Wu GR, Xu Q, et al. DynamicBC: A MATLAB toolboxfor dynamic brain connectome analysis. Brain Connect, 2014, 4(10):780-790.
  • 6Damaraju E, Allen EA, Belger A, et al. Dynamic functional con-nectivity analysis reveals transient states of dysconnectivity inschizophrenia. Neuroimage Clin,2014, 5 : 298-308.
  • 7Leonardi N, Richiardi J, Gschwind M, et al. Principal compo-nents of functional connectivity: A new approach to study dy-namic brain connectivity during rest. Neuroimage, 2013,83:937-950.
  • 8Li X, Zhu D, Jiang X, et al. Dynamic functional connectomicssignatures for characterization and differentiation of PTSD pa-tients. Hum Brain Mapp, 2014, 35(4) :1761-1778.
  • 9Calhoun VD, Adali T. Multisubject independent component anal-ysis of fMRI: A decade of intrinsic networks, default mode, andneurodiagnostic discovery. IEEE Rev Biomed Eng, 2012, 5:60-73.
  • 10Du YH, Fan Y. Group information guided ICA for fMRI data a-nalysis. Neuroimage, 2013, 69 : 157-197.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部