期刊文献+

求解具有张量积结构线性系统的共轭梯度法

The Conjugate Gradient Method for Linear Systems with Tensor Product Structure
下载PDF
导出
摘要 本文考虑具有张量积结构线性系统的数值解法.该线性系统常常来源于高维立方体上线性偏微分方程的有限差分离散化.利用张量-矩阵乘法,给出了基于张量格式的求解这类线性系统的共轭梯度法.与求解标准线性系统的共轭梯度法比较,新的算法能够节约大量的计算量及存储空间. The numerical solution of linear systems with tensor product structures is considered. Such structures arise from the finite difference diseretization of linear partial differential equations on a high dimensional hypercube. By ex-ploiting the tensor - matrix multiplication, we present a conjugate method based on tensor format for linear systems with tensor product structure. Comparing with the standard conjugate gradient method, the algorithm we proposed can reduce much computational cost and memory.
作者 陈震
出处 《数学理论与应用》 2013年第2期5-9,共5页 Mathematical Theory and Applications
基金 国家自然科学基金项目(11201092) 贵州师范大学博士科研启动项目
关键词 张量积 张量-矩阵乘法 共轭梯度法 高维 Tensor Product Tensor - matrix Multiplication Conjugate Gradient Method High Dimensionality
  • 相关文献

参考文献7

  • 1D.Kressner,C.Tobler.Krylovsubspacemethodsforlinearsystemswithtensorproductstructure[J].SIAMJ.MatrixAnal.Appl.,2010,31:1688—1714.
  • 2J.Ballani.L.Grasedyck.Aprojectionmethodtosolvelinearsystemsintensorformat[J].Numer.LinearA1一gebraAppl.,2013,20:27—43.
  • 3T. G. Kolda, B. W. Bader. Tensor decompositions and applications[J]. SIAM Rev., 2009, 51:455-500.
  • 4L. N. Trefethen, D. Ban. Numerical Linear Algebra[M], SIAM, Philadelphia, 1997.
  • 5G. H. Golub, C. F. Van Loan. Matrix Computations (The 3rd edition)[ M]. Baltimore, Maryland: Johns Hopkins University Press, 1996.
  • 6B. W. Bader, T. G. Kolda. Efficient MATLAB computations with sparse and factored tensors[ J]. SIAM J. Sci. Comput. , 2007, 30:205-231.
  • 7B. W. Bader, T. G. Kolda. MATLAB Tensor Toolbox, Version2.4. http://csmr, ca. sandia, gov/~ tgkolda/ TensorToolbox/, 2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部