摘要
为了研究人工神经网络技术(ANN)、遗传算法(GA)相结合的化学计量方法在石吊兰素回流提取过程中的应用,在单因素实验基础上,采用Box-Behnken实验设计和ANN-GA法研究乙醇浓度、提取时间和提取次数、固液比对提取液中石吊兰素含量的影响。得到石吊兰中石吊兰素的最佳提取工艺为:乙醇浓度84%,提取2.8h,固液比1∶17,提取2次。按照该条件进行验证,得到提取液中石吊兰素含量为2.35mg/g,与预测值误差为1.88%。结果表明,神经网络遗传算法模型拟合度较好,这一方法在工艺优化过程中具有广泛的应用前景。
In order to explore the extraction process of nevadensin from Fewflower Lysionotus,the single factor experiment and artificial neural network-genetic algorithm(ANN-GA) methods were applied to optimize the concentration of ethanol,extracting time,extracting times and solid-liquid ratio. The optimal extraction process of nevadensin was as follows ..ethanol concentration 84%, extraction time 2.8h, solid-liquid ratio 1:17, and extracting 2 times,respectively. Based on this combined conditions,the predicted maximum was 2.35mg/g, and the error of the predicted value of 1.88%. Results indicated that ANN-GA method had wide application prospect in the optimization process.
出处
《食品工业科技》
CAS
CSCD
北大核心
2013年第14期283-286,共4页
Science and Technology of Food Industry
关键词
人工神经网络
遗传算法
石吊兰素
中心组合设计
artificial neural network (ANN)
genetic algorithm (GA)
nevadensin
Box-Behnken design