期刊文献+

ANN-GA法优化石吊兰素提取工艺 被引量:1

Optimization of the nevadensin extraction conditions from Fewflower Lysionotus using ANN-GA
下载PDF
导出
摘要 为了研究人工神经网络技术(ANN)、遗传算法(GA)相结合的化学计量方法在石吊兰素回流提取过程中的应用,在单因素实验基础上,采用Box-Behnken实验设计和ANN-GA法研究乙醇浓度、提取时间和提取次数、固液比对提取液中石吊兰素含量的影响。得到石吊兰中石吊兰素的最佳提取工艺为:乙醇浓度84%,提取2.8h,固液比1∶17,提取2次。按照该条件进行验证,得到提取液中石吊兰素含量为2.35mg/g,与预测值误差为1.88%。结果表明,神经网络遗传算法模型拟合度较好,这一方法在工艺优化过程中具有广泛的应用前景。 In order to explore the extraction process of nevadensin from Fewflower Lysionotus,the single factor experiment and artificial neural network-genetic algorithm(ANN-GA) methods were applied to optimize the concentration of ethanol,extracting time,extracting times and solid-liquid ratio. The optimal extraction process of nevadensin was as follows ..ethanol concentration 84%, extraction time 2.8h, solid-liquid ratio 1:17, and extracting 2 times,respectively. Based on this combined conditions,the predicted maximum was 2.35mg/g, and the error of the predicted value of 1.88%. Results indicated that ANN-GA method had wide application prospect in the optimization process.
出处 《食品工业科技》 CAS CSCD 北大核心 2013年第14期283-286,共4页 Science and Technology of Food Industry
关键词 人工神经网络 遗传算法 石吊兰素 中心组合设计 artificial neural network (ANN) genetic algorithm (GA) nevadensin Box-Behnken design
  • 相关文献

参考文献9

  • 1吴永平,高智席,周光明.HPLC-CL测定吊石苣苔中石吊兰素的含量[J].西南师范大学学报(自然科学版),2007,32(3):48-51. 被引量:10
  • 2Chen JW,Zhu ZQ,Hu TX,et al. Structure activity relationshipof natural flavonoids inhydroxyl radicai scavenging effects[J]. Acta Pharmacologica Sinica, 2002,23 (7) : 667-672.
  • 3周法兴,傅林莉,姜平川,方鼎,覃德海,水野瑞夫.吊石苣苔属植物化学成分的研究[J].中国中药杂志,1992,17(7):418-420. 被引量:7
  • 4王绍云,邹勇,曹晖,杨晓艳.石吊兰素的研究进展[J].凯里学院学报,2008,26(6):47-49. 被引量:12
  • 5Lu HL,Yang FC,Lin HY,et al. Artificial neural network to predict the growth of the indigenous Acidthiobacillus thiooxidans [J]. Chem Eng J,2008,137(2):231-237.
  • 6盛卫国,熊阳,徐莲英.正交设计优选石吊兰中石吊兰素的提取工艺[J].中药材,2008,31(11):1751-1753. 被引量:8
  • 7Guo WL, Zhang YB, fermentation medium for Optimization of nisin production from Lactococcus lactis subsp, lactis using response surface methodology (RSM) combined with artificial neural network-genetic algorithm(ANN- GA)[J]. AFR J Biotechnol, 2010,9 (38) : 6264-6272.
  • 8Sivapathasekaran C, Mukherjee S, Ray A, et ol. Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant [J]. Bioresour. Technol, 2010, 101 (8) : 2884-2887.
  • 9Masters T. Practical Neural Network Recipes in C ++[M]. Boston: Academic Press, 1993.

二级参考文献26

共引文献29

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部