期刊文献+

基于随机集理论的模糊观测多目标跟踪方法 被引量:1

Multi-target tracking with ambiguous measurements based on random set theory
原文传递
导出
摘要 为解决传感器观测数据具有不确定性和模糊性的多目标跟踪问题,首先给出了模糊观测的随机子集表示及其似然函数构造方法:然后利用所构造的似然函数,并结合概率假设密度(PHD)滤波器来实现模糊观测的多目标跟踪.仿真结果显示,标准PHD滤波器在模糊观测下会出现目标数目估计不准确的问题.针对这一问题,在分析了该问题产生原因的基础上,通过改进PHD滤波器的更新过程,提出了一种单量测独立更新的PHD滤波方法.仿真结果表明,在模糊观测下,改进算法能得到比标准PHD滤波方法更准确的目标数目估计和更高的跟踪精度. In order to deal with the problem of multi-target tracking with vagueness and ambiguous measurements, firstly, this paper discusses how to model ambiguous measurements as a random subset and construct its likelihood function. Then, the paper uses probability hypothesis density (PHD) particle filter to deal with multi-target tracking with ambiguous likelihood function. Simulation results show that the standard PHD filter provides poor estimate result of target number when using ambiguous measurements. After investigating the causes of the problem, the paper proposes an improved PHD filter, which uses each measurement to update particles. Simulation results show that the proposed method can enhance target number estimate and tracking accuracy.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第7期1873-1879,共7页 Systems Engineering-Theory & Practice
关键词 多目标跟踪 模糊观测 有限集统计理论 概率假设密度滤波 粒子滤波 multi-target tracking ambiguous measurements finite set statistics theory (FISST) PHDfilter particle filter
  • 相关文献

参考文献11

  • 1Mahler R. Multitarget Bayes filtering via first-order multitarget moment[J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9215), 2003, 39(4): 1152-1178.
  • 2Vo B T, Vo B N, Cantoni A. Bayesian filtering with random finite set observations[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1313-1326.
  • 3Mahler R. Statistical multisource multitarget information fusion[M]. Norwood, MA: Artech House, 2007.
  • 4刘宗香,谢维信,黄敬雄.模糊观测数据的关联和目标跟踪[J].信号处理,2005,21(4):335-337. 被引量:4
  • 5何友,田淑荣,孙校书.一种基于随机集的模糊观测的多目标跟踪算法[J].宇航学报,2008,29(6):2007-2012. 被引量:5
  • 6邓勇,朱振福,钟山.基于证据理论的模糊信息融合及其在目标识别中的应用[J].航空学报,2005,26(6):754-758. 被引量:63
  • 7El-Fallah A, Zatezalo A, Mahler R, et al. Unified robust-bayes multisource ambiguous data rule fusion[C]// Signal Processing, Sensor Fusion and Target Recognition XIV, Proc of SPIE, 2005, 5809: 277-287.
  • 8Mahler R. Unified Bayes filtering with fuzzy and rule-based evidence[C]// Signal Processing, Sensor Fusion and Target Recognition XIV, Proc of SPIE, 2005, 5809: 265-276.
  • 9Winters D W, Witkoskie J B, Kuklinski W S. An initial investigation into incorporating human reports into a road-constrained random set tracker[C]// Signal Processing, Sensor Fusion and Target Recognition XVII, Proc of SPIE, 2008, 6968: 69680Q-1-69680Q-11.
  • 10Mahler R, El-Fallah A. PHD filtering in known, target-dependent clutter[C]//Proc of SPIE on Signal Processing Sensor Fusion, and Target Recognition XIX, 2010, 7697: 76970E-1-76970E-12.

二级参考文献23

共引文献68

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部