摘要
针对数字家庭系统用户找到满意服务资源越来越困难的问题,提出了使用协同过滤算法进行个性化推荐的方法。针对传统算法中用户评分数据存在的稀疏性的问题,提出了一种改进的基于用户行为数据的协同过滤推荐算法。通过引入用户使用资源的具体时间、总次数和时间长度这3个维度构建用户兴趣模型,利用该模型寻找目标用户的最近邻居。实验证明,该方法可以有效地为用户提供个性化推荐,进一步扩展了协同过滤方法的应用范围。
It is increasingly difficult for digital home system users to find satisfactory service resources.To solve the problem,a personalized recommendation was proposed by using collaborative filtering algorithm.Given that the sparse user rating data of traditional algorithm,it came up with an improved collaborative filtering algorithm based on the user behavior data.A user interest model was built from three dimensions,including the specific time,total frequency and time length,and then the interest model was used to find the nearest neighbor of target user.The experiment proves that the method is effective to provide personalized recommendation for digital home system users.The method extends the application range of collaborative filtering method.
出处
《武汉理工大学学报(信息与管理工程版)》
CAS
2013年第3期331-335,共5页
Journal of Wuhan University of Technology:Information & Management Engineering
基金
国家自然科学基金资助项目(71172043
71072077)
国家科技支撑计划资助项目(2011BAH16B02
2012BAH93F04)
中央高校基本科研业务费专项基金资助项目(2012-IB-063)
武汉理工大学教学研究基金资助项目
关键词
数字家庭
协同过滤
用户消费行为
用户兴趣模型
digital home
collaborative filtering
user consumer behavior
user interest model