期刊文献+

人体行为识别的条件随机场方法 被引量:4

The Conditional Random Fields Method for Human Action Recognition
下载PDF
导出
摘要 针对人体行为的时变性,提取人体运动的侧影序列作为描述行为的特征。利用条件随机场方法建立人体行为模型,并通过序列数据的标记解决行为识别问题。该方法特征提取简单,针对运动状态序列而非单帧图像进行建模,提高了识别准确率;同时对数据没有条件独立性假设,具有更加广泛的适用性。在视频行为数据库KTH上的测试结果表明:条件随机场优于隐马尔可夫模型和支持向量机,相对于已有方法更加简单易用,且识别准确率高于其他方法。 In this paper,we first extract the silhouette sequence of a moving person and describe its action by using the features extracted from its silhouette sequence based on the time-varying property of human action.Then we mathematically define the human action by using the conditional random fields and recognize different actions by labeling the video sequences.This method has the following advantages: it is easy to extract features from silhouette sequence and thus it could be used in human action recognition application on large-scale video sequences;the conditional random fields models the states of action nor separate frame images and thus it improves the classification performance;it avoids the conditional independence hypothesis and thus could be used on wide range of datasets.The experimental results on popular video based human action dataset,i.e.,KTH,show that the conditional random fields method outperforms both hidden Markov model and support vector machine.In addition,our method outperforms existing human action recognition methods.Although our method performs comparably to the state-of-the-art method,it is easier to use in practice.
作者 王媛媛 王斌
出处 《重庆理工大学学报(自然科学)》 CAS 2013年第6期93-99,105,共8页 Journal of Chongqing University of Technology:Natural Science
关键词 条件随机场 行为识别 隐马尔可夫模型 机器学习 最优化 conditional random fields action recognition hidden Markov models machine learning optimization
  • 相关文献

参考文献20

  • 1Daniel Weinland, Remi Ronfard, Edmond Boyer. A survey of vision-based methods for action representation, seg- mentation and recognition [ J ]. Computer Vision and Im- age Understanding,2010,115 ( 2 ) :224 - 241.
  • 2王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 3Bobiek A,Davis J. Real-time recognition of activity using temporal templates [ C ]//IEEE Workshop on Applica- tions of Computer Vision. [ S.l. ] : [ s. n. ], 1996:39 -42.
  • 4Veeraraghavan A, Chowdhury A K, Chellappa A. Matc- hing shape sequences in video with applications in human movement analysis [ J ]. IEEE Transaction on Pattern A- nalysis and Machine Intelligence, 2005,27 (12) : 1896 - 1909.
  • 5Yamato J,Ohya J,lshii K. Recognizing Human Action in time-sequential Images Using Hidden Markov Model [ C ]//Conference on Computer Vision and Pattern Rec- ognition. [S. l. ]:[s. n. ],1992:379-385.
  • 6Pau C C, Chin D L. A daily behavior enabled hidden Markov model for human behavior understanding[ J ]. Pat- tern Recognition ,2008,41:1572 - 1580.
  • 7Hasan M K,Rubaiyeat H A,Lee Y H,et al. A reconfigu- rablc HMM for activity rccogniiion [ C ]//International Conference on Advanced Conununication Technology. Korea: [ s. n. ] ,2008.
  • 8Luo Ying, Wu Tzong-der, Hwang Jenq-neng. Object-based Analysis and Interpretation of Human Motion in Sports Video Sequences by Dynamic Bayesian Networks [ J ]. Computer Vision and Image Understanding, 2003, 92 (2/3) :196 -216.
  • 9Muncaster J, Ma Y Q. Activity recognition using dynmnic Bayesian networks with automatic state selection [ C ]// IEEE Workshop on Motion and Video Computing. Austin: [ s. n. ] ,2007.
  • 10John Lafferty, Andrew McCallum, Fernando Pereira. Con- ditional Random Fields:Probabilistic Models for Segmen- ting and Labeling Sequence Data[ C]//Proc of the 8^th In- ternational Conference on Machine Learning. [ S. l. ] : [ s. n. ] ,2002:282-291.

二级参考文献105

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献275

同被引文献38

  • 1李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 2李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 3谷军霞.行为表征与行为识别方法研究[D].清华大学,2010.
  • 4GUO Y, XU G, TSUJI S. Tracking Human Body Motion Based on a Stick Figure Model [ J ]. Visual Communica- tion Image Representation, 1994, 5 (01) :1-9.
  • 5JU S X, BLACK M J, YACCOB Y. Cardboard People: a Parameterized Model of Articulated Image Motion [ C ]// Proceedings of the IEEE International Conference on Au- tomatic Face and Gesture Recognition. Killington, Ver- mont, USA:FG 96, 1996:38-44.
  • 6ROHR K. Towards Model-based Recognition of Human Movements in Image Sequences [J]. CVGIP: Image Un- derstanding, 1994, 59(01) :94-115.
  • 7FUJIYOSHI H, LIPTON A J. Real-time Human Motion Analysis by Image Skeletonization [ C ].//Proceedings of the 4th IEEE Workshop on Applications of Computer Vi- sion. Sarasota, FL, USA: WACV'98, 1998:15-21.
  • 8YAMATO J, OHYA J, ISHII K. Recognizing Human Ac- tion in Time- sequential Images Using Hidden Markov Model [ C ]//Computer Vision and Pattern Recognition, 1992. Proceedings CVPR '92. , 1992 IEEE Computer So- ciety Conference on 1992. Champaign, IL: CVPR, 1992:.
  • 9LAFFERTY J, MCCALLUM A, PEREIRA F C N. Condi- tional Random Fields: Probabilistic Models for Segmen- ting and Labeling Sequence Data[ C ]//Proceedings of the 18th International Conference on MachineLearning. San Francisco: Margan Kaufmann,2001:282-289.
  • 10ZHONG P, WANG R. A Multiple Conditional Random Fields Ensemble Model for Urban Area Detection in Re- mote Sensing Optical Images[ J ]. IEEE Transactions on Ge- cscience and Remote Sensing,2007,45(39):78-88.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部