期刊文献+

先进边界区分噪声检测的改进算法 被引量:3

Modification of advanced boundary discriminative noise detection algorithm
原文传递
导出
摘要 针对典型的两个边界随机值噪声检测问题,先进边界区分噪声检测(ABDND)通过全局的灰度值统计方法来确定噪声边界,取得了良好的检测效果。但是在噪声范围较宽时,ABDND的检测结果中会有大量的错检噪声。在ABDND的基础上提出一种噪声检测改进算法(MABDND),算法分为两个阶段:第1阶段采用ABDND算法中的全局灰度值统计方法;第2阶段通过对局部灰度值的统计找出第1阶段中的错检像素,并将错检噪声恢复为非噪声像素。本文算法的优点在于利用第2阶段的验证技巧去校正第1阶段中产生的大量错检像素,以保证较低的漏检与错检率。以图像Lena、peppers为实验对象,实验结果表明MABDND的检测性能优于ABDND,特别是在噪声范围较宽时,MABDND具有更好的检测性能和更强的噪声适应能力。 In this paper, we are aiming at random-valued impulse noise detection in two boundaries, using advanced boundary discriminative noise detection (ABDND) and a global histogram to obtain the noise boundary. Although we get good detection results, the rate of false detection increases for ABDND when the range of the noise boundary increases. A modification of the ABDND (MABDND) is therefore proposed in this paper. It includes two stages. First, it uses the global histogram to obtain the noise boundary identical to the ABDND. Second, it uses the statistic of a part of the histo- gram to find false detected pixels in the first stage, and marks them as uncorrupt pixels. The merit of MABDND is to use the confirmation technique in the second stage to rectify many false detectied pixels in the first stage to keep a low rate for both miss detection and false detection. Image Lena and peppers are used for simulations, and the experimental results show the performance of MABDND is better than that of ABDND, especially, when the range of random-valued is wide MABDND is more robust.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第7期746-752,共7页 Journal of Image and Graphics
基金 福建省自然科学基金项目(2010J05132) 教育部博士点新教师基金项目(20113514120007) 福建省教育厅科技项目(JA10034)
关键词 随机值脉冲噪声 边界区分噪声检测(BDND) 先进边界区分噪声检测(ABDND) 开关中值滤波 噪声检测 random-valued impulse noise boundary discriminative noise detection (BDND) advanced boundary dis-criminative noise detection (ABDND) switching median filter noise detection
  • 相关文献

参考文献9

  • 1Hwang H, Haddad R A. Adaptive median filters., new algorithms and results [ J]. IEEE Transactions on Image Processing, 1995, 4(4) :499-502.
  • 2Zhang X, Yin Z, Xiong Y. Adaptive switching mean filter for impulse noise [ J ]. Congress on Image and Signal Processing, 2008, 3:275-278.
  • 3Luo W. An efficient algorithm for the removal of impulse noise from corrupted images [ J ]. International Journal of Electronics and Communications, 2006, 61 (8) :551-555.
  • 4Nallapernma K, Varghese J, Saudia S. Salt&pepper impulse noise Removal using adaptive switching median filter [ C ]//Pro- ceedings of IEEE Oceans, Asia Pacific. Singapore: IEEE Press, 2006 : 1-8.
  • 5Ng P E, Ma K K. A switching median filter with boundary dis- criminative noise detection for extremely corrupted images [ J ]. IEEE Transactions on Image Processing, 2006, 15 (6) : 1506- 1516.
  • 6Nair M S, Ameera Mol P M. Direction based adaptive weighted switching median filter for removing high Density impulse noise [ J]. Computers & Electrical Engineering,2012,38 (6) : 1679- 1705.
  • 7Tfipathi A K, Ghanekar U, Mukhopadhyay S. Switching median filter:advanced boundary discriminative noise detection algorithm [J]. IET Image Process, 2011,5(7) :598-610.
  • 8Ibrahim H D, Nicholas S P K, Theam F N. Simple adaptive median filter for the removal of impulse noise from highly corrup- ted images [ J]. IEEE Transactions on Consumer Electronics, 2008, 4 ( 11 ) : 1920-1927.
  • 9Chart R H, Ho C W, Nikolova M. Salt-and pepper noise removal by median-type noise detectors and detail-preserving regulariza- tion[ J ]. IEEE Transactions on Image Processing, 2005, 14(10) : 1479-1485.

同被引文献26

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部