期刊文献+

人体动作的超兴趣点特征表述及识别 被引量:8

Human action recognition based on super-interest points features
原文传递
导出
摘要 提出一种基于超兴趣点的动作特征描述方法,用于人体动作的识别。兴趣点特征描述了人体动作时变化显著的局部点信息,但其最大的缺陷在于离散的兴趣点间缺乏时间和空间上的结构关联。提出根据兴趣点间的时空距离,使用广度优先搜索邻居算法,将时空距离相近的兴趣点聚合成超兴趣点,该结构作为一个整体,反映人肢体在一定时空范围内的动作变化特征。与现有的基于局部兴趣点的动作识别算法相比,本文算法增加了兴趣点间的整体时空结构关系,提高了特征的区分度。实验采用两层分类方法对超兴趣点特征分类,实验结果表明该算法具有较好的识别率。 A novel feature representation method based on super-interest points is proposed and applied to human action recognition. Interest point features describe the salient change of local point information when humans are in the state of movement, however, the drawback of these features is that the rich spatio-temporal relationships among the discrete interest points are not being used. According to the spatio-temporal distance of interest points, a broad first search neighbors algo- rithm is used to cluster these adjacent points into super-interest point. The super-interest point features reflect the variety of the human limb in a certainly spatio-temporal scope. Compared to the existing interest point method, the spatial and tempo- ral information among the points, are all included in our super-interest points, making the features more discriminative. Fi- nally, a two hierarchical classifier recognizes the human actions using super-interest point features. The experimental results show that our method achieves a good recognition rate.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第7期805-812,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61103123)
关键词 超兴趣点 动作识别 广度优先搜索邻居 时空距离 super-interest points action recognition broad first search neighbors spatio-temporal distance
  • 相关文献

参考文献24

  • 1Efros A A, Berg A C, Mori G, et al. Recognizing action at a dis- tance[ C ]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003:726-733.
  • 2Yilmaz A, Shah M. Matching actions in presence of camera mo- tion[ J]. Computer Vision and Image Understanding, 2006, 104(2-3) :221-231.
  • 3Dollar P, Rabaud V, Cottrell G, et al. Behavior recognition via sparse spatio-temporal features [ C ]//Proceedings of the 2nd Joint 1EEE International Workshop on :isual Surveillance and Perform- ance Evaluation of Tracking and Surveillance. Beijing, China: IEEE, 2005:65-72.
  • 4Laptev L On space-time interest points [ J ]. International Journal of Computer Vision, 2005, 64 (2) : 107-123.
  • 5Bregonzio M, Gong S, Xiang T. Recognising action as clouds of space-time interest points[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Florida, USA: IEEE, 2009 : 1948-1955.
  • 6Niebles J C, Wang H, Li F F. Unsupervised learning of human action categories using spatial-temporal words [ J ]. International Journal of Computer Vision, 2008,79(3): 299-318.
  • 7Laptev I, Marszalek M, Schmid C, et al. Learning realistic hu- man actions from movies [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA : IEEE, 2008 : 1-8.
  • 8Klaser A, M Marszalek, C Schmid. A spatio-temporal descriptor based on 3D-gradients [ C ]//Proceedings of British Machine Vi- sion Conference. Leeds, England : University of Leeds, 2008 : 955-1004.
  • 9Gao Z, Chen M, Hauptmann A, et at. Comparing evaluation protocols on the KTH dataset [ C ]//Proceedings of the 1 st Inter- national Conference on Human Behavior Understanding. Istan- bul, Turkey : Springer-Verlag, 2010:88-100.
  • 10Nater F, Grabner H, Gool L Van. Exploiting simple hierarchies for unsupervised human behavior analysis [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, California, USA: IEEE, 2010 : 2014-2021.

二级参考文献48

  • 1魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3王张琦,曹渠江.基于马尔可夫链的半监督分类器[J].上海理工大学学报,2007,29(1):51-54. 被引量:1
  • 4T B Moeslund. A survey of advances in vision-based human motion capture and analysis [J].Computer Vision and Image Understanding, 2006,104(3) :90 - 261.
  • 5Lawrence R Rabiner. A tutorial on hidden Markov model and selected applications in speech recognition[A]. In Proc ICASSP' 89[ C]. Glasgow: IEEE press, 1989.257 - 286.
  • 6Michael M, Yin Jason. Application of hidden Markov models to gene prediction in DNA[ A]. In Proc. IISR' 99[C ]. Bethesda: press, 1999.40 - 48.
  • 7Yu Shun-zheng, Hisashi Koayashi. An effective forward-back- ward algorithm for an explicit duration hidden Markov model [J]. IEEE Signal Processing Letters,2003,10(1) : 11 - 14.
  • 8Robertson, N Reid. A general method for human action recognition in video[ J]. Computer Vision and Image Understanding,2006, 104(2) :232 - 248.
  • 9Venkatesh Babu R, et al. Compressed domain action classification using HMM[J]. Pattern Recognition Letters 2002,23(10) : 1203- 1213.
  • 10Ahmad M, Lee Seong-whan. Human action recognition using multi- view image sequences features [ A ]. Proc of AFGR' 06 [ C]. Southampton: UOS press, 2006. 523 - 528.

共引文献38

同被引文献97

  • 1丛培盛,孙建忠.分水岭算法分割显微图像中重叠细胞[J].中国图象图形学报,2006,11(12):1781-1783. 被引量:27
  • 2Cai Z,Wang Y.A multiobjective optimization based evolutionary algorithm for constrained optimization[J].IEEE Trans.on Evolutionary Computation,2006,10(6):658-675.
  • 3Runacsson T P,Yao X.Search biases in constrained evolutionary optimization[J].IEEE Trans.on Systems,Man,Cybernetics (C),2005,35 (2):233-243.
  • 4Yu J X,Yao X,Choi C,et al.Materialized view selection as constrained evolutionary optimization[J].IEEE Trans.on Systems,Man,and Cybernetics (C),2003,33 (4):458-467.
  • 5Ge Ji,Wang Yao-nan,Zhang Hui,et al.Research on Pixel Probability Statistics based Background Modeling Algorithm Applied in Liquid Foreign Particle Inspection Machine[J].IJACT[J],2013,5(1):468-476.
  • 6Hua Zhen,Li Ye-wei,Li Jin-jiang.Image Salient Region Extraction Algorithm Based on Improved Visual Attention Model[J].JCIT [J],2011,6(5):280-290.
  • 7Le Q V, Zou W Y, Yeung S Y,et al. Learning hierarchical invariant spatio-temporal features for actionrecognition with independent subspace analysis [C] // IEEE Conference on Computer Vision and PatternRecognition. Providence,USA: IEEE Press, 2011 : 3361-3368.
  • 8Ma A, Yuen P, Zou W,et al. Supervised spatio-temporal neighborhood topology learning for action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology,2013,23(8) : 1447-1460.
  • 9Schindler K, Van Gool L. Action snippets: How many frames does human action recognition require? [_C]//IEEE Conference on Computer Vision and Pattern Recognitioru Anchorage, USA: IEEE Press, 2008: 1-8.
  • 10Cao X,Ning B,Yan P,et al. Selecting key poses on manifold for pairwise action recognition[J]. IEEETransactions on Industrial Informatics , 2012,8(1) : 168-177.

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部