期刊文献+

地面LiDAR数据中建筑轮廓和角点提取 被引量:11

Extraction of building contours and corners from terrestrial LiDAR data
原文传递
导出
摘要 建筑轮廓和角点作为多平台激光雷达数据常用的配准基元,其提取方法正受到越来越多的关注。投影密度法是一种常用的从地面LiDAR数据中提取建筑轮廓和角点的方法,然而以往研究对于直接影响建筑轮廓提取结果的格网密度阈值考虑较少。提出一种轮廓密度估计的方法,能够根据点云实际情况自动准确地计算出格网密度阈值,从而提取较为准确的建筑轮廓格网。在此基础上,利用轮廓线段高程分割和密度延伸的方法对轮廓进行分割和恢复,能够提取完整的建筑轮廓。最后,利用轮廓线段的相交关系获得建筑角点。实验结果表明,本文方法能够有效从地面LiDAR数据中提取建筑轮廓和角点,正确性、完整性和定位精度较高。 Building contours and corners, as common registration primitives of muhi-platform LiDAR data, are drawing more and more attraction on their extraction. Density of projected points (DoPP) method is a usual approach for building contours and corners extraction from terrestrial LiDAR, however previous studies paid little attention on the determination of grid density threshold, which directly affects the extraction results. In this paper, we propose a building contour density es- timation method, which can provide a grid density threshold according to the actual point cloud, so that accurate building contours can be extracted. On this basis, the extracted contours are segmented and recovered using contour segmentation and density extension method, thus complete building contours are obtained. Finally, building corners are gained through the intersection of building contours. The experiment shows that the proposed method can effectively extract building con- tours and corners from terrestrial LiDAR with high correctness, completeness and positioning precision.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第7期876-883,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(41001238)
关键词 地面LiDAR 建筑轮廓和角点 格网密度阈值 轮廓密度估计法 terrestrial LiDAR building contours and corners grid density threshold contour density estimation method
  • 相关文献

参考文献19

  • 1Van Leeuwen M, Hilker T, Coops N C, et al. Assessment of standing wood and fiber quality using ground and airborne laser scanning: a review [ J]. Forest Ecology and Management, 2011, 261 (9) : 1467-1478.
  • 2Heritage G, Large A. Laser Scanning for the Environmental Sci- ences [ M]. Chichester: Wiley-Blackwell, 2009: 288.
  • 3Ruiz A, Kornus W, Talaya J, et al. Terrain modeling in an ex- tremely steep mountain: a combination of airborne and terrestrial lidar [ J ]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004, 35: 281-284.
  • 4Jaboyedoff M, Oppikofer T, Abellan A, et al. Use of LIDAR in landslide investigations : a review [ J ]. Natural Hazards, 2012, 61(1) : 1-24.
  • 5Jung S E, Kwak D A, Park T, et al. Estimating crown variables of individual trees using airborne and terrestrial laser scanners [ J]. Remote Sensing, 2011, 3 ( 11 ) : 2346-2363.
  • 6Hohenthal J, Alho P, Hyyppa J, et al. Laser scanning applica- tions in fluvial studies [ J ]. Progress in Physical Geography, 2011, 35(6): 782-809.
  • 7Fruh C, Zakhor A. Constructing 3D city models by merging aeri- al and ground views [ J]. Computer Graphics and Applications, 2003, 23(6) : 52-61.
  • 8Jaw J J, Chuang T Y. Registration of ground-based LiDAR point clouds by means of 3D line features [ J]. Journal of the Chinese Institute of Engineers, 2008, 31(6) : 1031-1045.
  • 9Besl P J, Mckay N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1992, 14(2) : 239-256.
  • 10Aparecida Dos Santos Galvanin E, Porfi[rio Dal Poz A. Extrac- tion of building roof contours from LiDAR data using a Markov- random-field-based approach [ J ]. IEEE Transactions on Geosci- ence and Remote Sensing, 2012, 50(3) : 981-987.

同被引文献186

引证文献11

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部