期刊文献+

基于时序的不同事物同属性的关联规则挖掘

The Association Rule Mining of Same Attributes but Different Things Based on the Temporal Logic
下载PDF
导出
摘要 基于时序的关联规则挖掘算法的研究一直都是人们关注的课题,提出了一种基于时序逻辑的不同事物同属性的关联规则挖掘。传统的关联规则主要是揭示了多个事物的同一属性在相同的时间点上的相互关联性,这样的关联规则的项与项之间没有体现时间上的差别,也就无法对时间序列的发展趋势进行预测。实验表明这种方法对于不同事物同属性预测具有现实意义。 The timing-based association rule mining algorithm has always been the subject of attention, this paper presents a temporal logic based on the different things the same attribute association rules mining. Traditional association rules is to reveal the interconnectedness of things the same property on the same point in time, this association rules between items does not reflect the time difference, it can not be on the development of time series The trend forecast.Association rules mining association rule mining method based on temporal logic of different things with the property reflects the degree of corre- lation between the different states of the same attributes of different things on the different points in time. The result shows this algorithm is of practical significance on single-property prediction things.
出处 《江苏技术师范学院学报》 2013年第2期20-23,共4页 Journal of Jiangsu Teachers University of Technology
关键词 数据挖掘 关联规则 时序逻辑 data mining association rule temporal logic
  • 相关文献

参考文献6

二级参考文献35

  • 1Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery(PKDD'00).Freiburg,Germany,2000:13-23.
  • 2Kuramochi M,Karypis G.Frequent subgraph discovery//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2001).San Jose,California,USA,2001:313-320.
  • 3Yan X,Han J.gSpan:Graph-based substructure pattern mining//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2002).Maebashi City,Japan,2002:721-724.
  • 4Tian Y,Hankins R A,Patel J M.Efficient aggregation for graph summarization//Proceedings of the ACM SIGMOD International Conference on Management of Data(SIGMOD 2008).Vancouver,BC,Canada,2008:567-580.
  • 5Chen Chen,Lin Cindy X,Fredrikson Matt,Christodorescu Mihai,Yan Xifeng,Han Jiawei.Mining graph patterns efficiently via randomized summaries//Proceedings of the VLDB09.Lyon,France,2009:742-753.
  • 6Yan X,Han J.Closegraph:Mining closed frequent graph patterns//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD').New York,NY,USA,2003:286-295.
  • 7Zeng Z,Wang J,Zhang J,Zhou L.FOGGER:An algorithm for graph generator discovery//Proceedings of the 12th Inter-national Conference on Extending Database Technology(EDBT 2009).Saint-Petersburg,Russia,2009:517-528.
  • 8Yan X,Cheng H,Han J,Yu P S.Mining significant graph patterns by scalable leap search//Proceedings of the SIGMOD 2008.Vancouver,BC,Canada,2008:433-444.
  • 9Ranu Sayan,Singh Ambuj K.GraphSig:A scalable approach to mining significant subgraphs in large graph databases//Proceedings of the IEEE 25th International Conference on Data Engineering(ICDE'09).Washington,DC,USA:IEEE Computer Society,2009:844-855.
  • 10Huan J,Wang W,Prins J,Yang J.SPIN:Mining maximal frequent subgraphs from graph databases//Proceedings of the SIGKDD.Seattle,WA,USA,2004:581-586.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部