期刊文献+

Hermite矩阵特征值的不等式研究

Study on Inequalities of Eigenvalues of Hermite Matrix
下载PDF
导出
摘要 以Courant-Fisher定理为基础,研究了Hermite矩阵特征值之间的不等式关系,然后研究了一般矩阵特征值与Hermite矩阵特征值之间的不等式关系,最后研究了Hermite矩阵特征值与谱半径之间的关系。 Based on the Courant-Fisher theorem, the inequality relationship between the eigenvalues of Hermite matrices was studied; and then the inequality relationship between the eigenvalues of the gen- eral matrix and Hermite matrix was studied; Finally, the relationship between the eigenvalues of Hermite matrix and spectral radius was studied.some conclusions deduced thereby.
作者 卢曦 施维成
出处 《江苏技术师范学院学报》 2013年第2期52-54,共3页 Journal of Jiangsu Teachers University of Technology
基金 江苏理工学院校级科研基金(KYY11091) 住房和城乡建设部科学技术计划项目(2012-K3-9) 重庆交通大学水利水运工程教育部重点实验室暨国家内河航道整治工程技术研究中心开放基金资助(SLK2012B05)
关键词 Courant-Fisher定理 谱半径 正定 Courant-Fisher theorem spectral radius positive
  • 相关文献

参考文献7

  • 1R.A.Horn,C.R.Johnson.Matrix Analysis[M].Cambridge university press, New York, 1985:119-130.
  • 2B.D.Graven.Complex symmetric matrices[J].Austral.math.soc,1968,10:341-354.
  • 3王耕禄,史荣昌.矩阵理论[M].北京:国防工业出版社,1998.
  • 4李炯生.实方阵的正定性[J].数学的实践与认识,1985,3:67-67.
  • 5张明善.关于Hermite矩阵的一个特征性质[J].重庆师范学院学报(自然科学版),1996,13(1):71-73. 被引量:6
  • 6袁晖坪.广义酉矩阵与广义Hermite矩阵[J].数学杂志,2003,23(3):375-380. 被引量:31
  • 7WilkinsonJH.代数特征值问题[M].科学出版社,1987:35-55.

二级参考文献15

  • 1杨虎.矩阵的泛正定与广义逆偏序[J].系统科学与数学,1993,13(3):270-275. 被引量:22
  • 2佟文廷.广义正定矩阵[J].数学学报,1984,27(6):801-801.
  • 3Hom R A, Johnson C R. Matrix Anaiysis [M] Cambridge: Cambridge university Press, 1985.
  • 4Lin Wenwei, Volker Mehrmann. Canonical forms for Hamiltonian and symplectic matrices and pencils [J].Linear Algebra and its Appilcatons, 1999, 302-303. 469-533.
  • 5Wanzhexian. Geometry of Hamilton matrices and its applications H[J] Algebra colloquium. 1996, 3(2): 107-116.
  • 6Tam Bitshum, Yang Shangjun. On matrices whose numerical ragnes have circular or weak circular symmetry [J]Linear Algebra its Applications, 199, 302-303. 139-221.
  • 7Wei Yiming. A characterization and representation of the generalized inverse A and its applications [J] .Linear Algebra and its Appilcations 1998, 280. 87-96.
  • 8Wei Musheng. Equivalent conditions for generalized inverses of products[J]. Linear Algebra and its Applications, 1997, 266. 347-363.
  • 9姜家辉.矩阵理论基础[M].大连:大连理工大学出版社,1997.1-277.
  • 10屠伯埙.亚正定阵理论(Ⅰ)[J].数学学报(中文版),1990,33(4):462-471. 被引量:214

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部