期刊文献+

带有全铰节点的三维杆系结构静力分析的回传波射矩阵法研究 被引量:2

Method of Reverberation-Ray Matrix for Static Analysis of 3D Bar-System Structures Containing Completely Hinged Joints
下载PDF
导出
摘要 推导出含有全铰节点的三维杆系结构的回传波射矩阵表达式,完善了具有任意连接和约束的空间杆系结构静力分析的回传波矩阵法。基于节点平衡方程和协调方程,推导出表达杆件近端位移和远端位移关系的传递分配矩阵及载荷源向量,并通过由对偶坐标系下近端位移和远端位移的关系获得结构的总体相位矩阵,再引入转列矩阵,进而推导出结构的回传波射矩阵,在此基础上求解以杆端位移为基本未知量的线性方程组,最终得到精确确定所有杆件的杆端位移及杆端内力的矩阵列式。给出了空间杆系结构算例分析,与有限元结果比较,验证了回传波射矩阵法的计算精度。 The corresponding reverberation-ray matrix for space bar-system structures containing com- pletely hinged joints was developed to improve the method of reverberation-ray matrix (MRRM) for static analysis of such structures with arbitrary connections of members and constraint conditions. The carry-o- ver distribution matrix and source vector were obtained using the equilibrium equations and compatibility conditions for displacements and rotational angles at each end of members as unknown quantities. The phase matrix and permutation matrix of the structure can be gained based on the relation between the dis- placements of two ends of each member under the prescribed dual coordinates. Finally, the reverberation -ray matrix was established. All the displacements and rotational angles at the ends of each member thus can be measured by solving the resulting linear system of equations for them. As an example, a 3D framed structure was analyzed, and comparisons of internal forces and moments with the data from the finite element method indicate that the present method has high computational accuracy.
作者 张娇 聂国华
出处 《力学季刊》 CSCD 北大核心 2013年第2期199-206,共8页 Chinese Quarterly of Mechanics
基金 教育部"新世纪优秀人才支持计划"项目(NCET-04-0373)
关键词 三维杆系结构 全铰接节点 回传波射矩阵法 静力分析 3D framed structure completely hinged joint method of reverberation-ray matrix static analysis
  • 相关文献

参考文献5

二级参考文献9

  • 1曹连伟,聂国华.回传波矩阵法在杆系结构静力分析中的应用[J].力学季刊,2005,26(4):687-691. 被引量:8
  • 2Howard S M, Pao Y H. Analysis and experiments on stress waves in planar trusses[J]. ASCE Journal of Engineering Mechanics, 1998, 884 - 891.
  • 3Pao Y H, Keh D C, Howard S M. Dynamic response and wave propagation in plane trusses and frames[J], AIAA J, 1999, 594 - 603.
  • 4Pao Y H, Keh D C. Moment-distribution method and re-distribution matrix analysis of frame structures[J]. The Chinese Journal of Mechanics,1996,12(1) :157 - 165.
  • 5朱伯钦 周竞欧 许哲明.结构力学[M].上海:同济大学出版社,1993..
  • 6Zienkiewicz 0 C. Cheung Y K. The Finite Element Method in Structural and Continuum Mechanics[M]. McGraw-Hill, London, 1967.
  • 7Howard S M, Pao Y H. Analysis and experiments on stress waves in planar trusses [J]. ASCE Journal of Engineering Mechanics. 1998,124(8) :884 - 891.
  • 8Pao Y H, Keh D C, Howard S M. Dynamic response and wave propagation in plane trusses and frames[J]. AIAAJ, 1999,137(5) :594 -603.
  • 9Pao Y H, Keh D C. Moment-distribution method and re-distriubtion matrix analysis of frame structures[J]. The Chinese Journal of Mechanics, 1996,12(1):157 - 165.

共引文献7

同被引文献15

  • 1袁驷,叶康生,F.W.Williams,D.Kennedy.杆系结构自由振动精确求解的理论和算法[J].工程力学,2005,22(S1):1-6. 被引量:14
  • 2曹连伟,聂国华.回传波矩阵法在杆系结构静力分析中的应用[J].力学季刊,2005,26(4):687-691. 被引量:8
  • 3SHARIYAT M, ASEMI K. 3D B-spline finite ele ment nonlinear elasticity buckling analysis of rectan gular FGM plates under non-uniform edge loads, using a micromechanical model[J]. Composite Struc- tures, 2014, 112: 397-408.
  • 4LIU G R, ZHANG G Y, ZONG Z, et al. Meshfree cell-based smoothed alpha radial point interpolation method (CS-a RPIM) for solid mechanics problems [J]. International Journal of Computational Methods, 2013, 10(4): i350020.
  • 5CHAI.LAMEL N, WANG C M, EL1SHAKOFF I. Discrete systems behave as nonlocai structural ele ments.. Bending, buckling and vibration analysis[J]. European Journal of Mechanics, A/Solids, 2014, 44: 125 35.
  • 6ABBAS L K, BESTLE D, RUI X T. Transfer ma- trix method for the determination of the free vibration of two elastically coupled beams[J]. Applied Mechan- ics and Materials, 2013, 372.. 301 304.
  • 7Shirmohammadi F, Bahrami S, Saadatpour M M,et al. Modeling wave propagation in moderately thick rectangular plates using the spectral element method [J ]. Applied Mathematical Modelling, 2015, 39 ( 12 ) : 3481-3495.
  • 8周俊,塔娜,饶柱石.杆系结构振动计算的解析节点法[c]//第十届全国振动理论及应用学术会议论文集.南京:南京航空航天大学出版社,2011:625-634.
  • 9蔡国强,聂国华.具有任意连接和约束的空间杆系结构静力分析的回传波矩阵法[J].力学季刊,2008,29(4):544-555. 被引量:5
  • 10黄修长,徐时吟,章振华,张志谊,华宏星.利用波动法研究曲梁结构中的波形转换和能量传递[J].振动与冲击,2012,31(8):38-46. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部