期刊文献+

基于尺度不变特征变换和SVM的人脸检测算法 被引量:1

A FACE DETECTION ALGORITHM BASED ON SCALE-INVARIANT FEATURE TRANSFORM AND SUPPORT VECTOR MACHINE
下载PDF
导出
摘要 模糊支持向量机的提出克服了过学习问题和减少了多类问题分类时存在的不可分区域,被成功地应用在分类检测问题中。在人脸的特征提取和检测实验中,使用变分的测地活动轮廓模型对人脸分割定位,通过尺度不变特征变换算法提取人脸图像的数字特征,然后用一种改进的紧密度模糊支持向量机进行人脸检测。改进的紧密度模糊支持向量机通过交叉确认来获取较好的隶属度函数的参数,提高了算法的执行效果。实验表明改进算法有较好的分类精度和鲁棒性。 The presentation of fuzzy support vector machine overcomes the overfitting problem and reduces the unclassifiable regions existing in multi-class classification, and has been successfully applied in classification and detection issues. In experiments of face features extraction and detection, the variational g6odesic active contour model is used for face segmentation and localisation, and scale-invariant feature transform algorithm is employed to extract the digital features of face images. Then an improved affinity fuzzy support vector machine is applied to face detection. This improved affinity fuzzy support vector machine obtains better parameters of membership functions through cross-validation, which improves the implementation effect of the algorithm. Experiments show that the improved algorithm has better classification accuracy and robustness.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第7期154-156,167,共4页 Computer Applications and Software
基金 辽宁省教育厅资助项目(2010076)
关键词 机器视觉 模式识别 测地活动轮廓模型 尺度不变特征变换 模糊支持向量机 Machine vision Pattern recognition Geodesic active contour model Scale-invariant feature transform Fuzzy support vector machine(FSVM)
  • 相关文献

参考文献10

  • 1Vapnik V. The Nature of Statistical Learning Theory[ M ]. New York: Springer, 1995.
  • 2Huang Hanpang, Liu Yihung. Fuzzy Support Vector Machines for Pattern Recognition and Data Mining [ J ]. International Journal of Fuzzy Systems, 2002, 4(3): 826-835.
  • 3艾青,秦玉平,方辉,赵骥.一种扩展的紧密度模糊支持向量机及其在文本分类中应用[J].计算机应用与软件,2010,27(4):45-47. 被引量:6
  • 4Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours [ J]. International Journal of Computer Vision, 1997, 22 ( 1 ) : 61 - 79.
  • 5Li Chunming, Xu Chenyang, Gui Changfeng, et al. Level set evolu- tion without re-initialization: A new variational formulation [ C ]// IEEE Conference on Computer Vision and Pattern Recognition, Wash- ington, D. C. , USA: IEEE Computer Society, 2005, 1( 1 ) : 430 - 436.
  • 6Lowe D G. Object recognition from local scale-invariant features [ C ]// International Conference on Computer Vision, 1999.9 : 1150 - 1157.
  • 7Lowe D G. Distinctive image features from scale-invariant keypoints [ J]. International Journal of Computer Vision, 2004,6 ( 2 ) :91 - 110.
  • 8张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 9Maneivitz L M, Yousef M. One-Class SVMs For Document Classifica- tion[ J ]. ]qurnal of Machine Leaning Research, 2002, ( 2 ) : 139 - 154.
  • 10朱美琳,杨佩.基于支持向量机的多分类增量学习算法[J].计算机工程,2006,32(17):77-79. 被引量:11

二级参考文献21

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 3朱美琳,杨佩.基于支持向量机的多分类增量学习算法[J].计算机工程,2006,32(17):77-79. 被引量:11
  • 4Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 5Zhuang Dong,Zhang Benyu,Yang Qiang.Efficient Text Classification by Weighted Proximal SVM[C]//Proceedings of the 5th IEEE International Conference on Data Mining.New York:IEEE,2005:538-545.
  • 6Hotta Kazuhiro.Support Vector Machine with Local Summation Kernel for Robust Face Recognition[C]//Proceedings of the 17th International Conference on Pattern Recognition.New York:IEEE,2004:482-485.
  • 7Ganapathiraju Aravind,Hamaker Jonathan E,Picone Joseph.Application of Support Vector Machines to Speech Recognition[J].IEEE Transaction on signal processing,2004,52(8):2348-2355.
  • 8Lin Chunfu,Wang Shengde.Fuzzy Support Vector Machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
  • 9Huang Hanpang,Liu Yihung.Fuzzy Support Vector Machines for Pattern Recognition and Data Mining[J].International Journal of Fuzzy Systems,2002,4(3):826-835.
  • 10Zhang Jiangshe,Leung Yiuwing.Robust Clustering by Pruning Outliers[J].IEEE Transactions on Systems,Man and Cybernetics-Part B,2003,33 (6):983-999.

共引文献92

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部