期刊文献+

匹配预测在人工免疫入侵检测中的研究与应用

RESEARCH AND APPLICATION OF MATCHING PREDICTION IN ARTIFICIAL IMMUNE INTRUSION DETECTION
下载PDF
导出
摘要 将人工免疫算法用于入侵检测,建立基于自体集的网络入侵检测系统,能有效检测出未知入侵方式,具有很好的适应性,但是仍存在辨别待检测模式速度过慢的问题。基于网络数据流的局部性,提出建立自体预测表记录当前成功与未知模式匹配过的自体的存储地址,通过优先匹配预测表中有记录的自体来节省冗余匹配次数提高检测系统的工作效率。通过分析和实验找出了预测表大小的最佳取值范围,并分析和证明了通过预测表匹配检测的效率要明显高于顺序匹配方法。 It is able to effectively detect the unknown intrusion patterns by applying the artificial immune algorithm to intrusion detection and establishing the self set-based networks intrusion detection system, and this has very good adaptability. However, there is the problem of too slow in distinguishing the modes to be detected. Based on the networks dataflow locality, we propose to build a prediction statement for the self to mark the storage addresses of them which have recently been successfully matched with unknown pattern. The redundant matching times are decreased and the efficiency of the system is improved by matching in prior those selves recorded in the prediction statement. In this paper we find out the best valuing range of the prediction statement size through analysis and experiment, we also analyse and prove that the efficiency of detection through prediction statement matching is clearly higher than through sequential matching approach.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第7期213-216,共4页 Computer Applications and Software
基金 广东省教育部产学研结合项目(2009B090300350)
关键词 入侵检测 网络数据流局部性 自体集 预测表 Intrusion detection Network dataflow locality Self set Prediction statement
  • 相关文献

参考文献8

  • 1Forrest S,Perelson A S. Self-nonself Discrimination in a Computer[ C] //Proc. of IEEE Symposium on Research in Security and Privacy,202 -212,Oakland,CA,May 16 - 18,1994.
  • 2De Castro L N, Van Zuben F. The clonal selection algorithm with engineering applications[ C ]//Proc of Genetic and Evolutionary Computation Conference. USA : Morgan Kaufman Publishers ,2000:36 - 37.
  • 3Kim J, Bentley P J.. Towards an artificial immune system for network intrusion ;an investigation of dynamic clonal selection. The Congress on Evolutionary Computation ( CEC-2002 ) [ C ]. Washington D. C. : IEEE Press,2002 : 1015 - 1020.
  • 4Gulati N, Wiliamson C, Bunt R. LAN Traffic Locality : Characterization and Application[ C ]//Proe. of the 1 st International Conference in Local Area Network Intereonnection. New York, USA:Plenum Publishing Corporation, 1993:233 - 250.
  • 5Williamson C. Internet Traffic Measurement [ J ]. IEEE inernet Computing, 2001, 5(6) :70 -74.
  • 6宋明秋,傅韵,邓贵仕.基于决策树和协议分析的入侵检测研究[J].计算机应用研究,2007,24(12):171-173. 被引量:9
  • 7龚俭,董庆,陆晟.面向入侵检测的网络安全监测实现模型[J].小型微型计算机系统,2001,22(2):145-148. 被引量:22
  • 8Olusola A A, Oladele A S, Abosede D O. Analysis of KDD' 99 Intrusion Detection Dataset for Selection of Relevance Features [ C ]//Proceeding of the World Congress on Engineering and Computer Science. San Francisco, USA:WCECS,2010, ISSN:2078-0958.

二级参考文献11

  • 1杨学兵,张俊.决策树算法及其核心技术[J].计算机技术与发展,2007,17(1):43-45. 被引量:88
  • 2匿名作者 前导工作室(译).网络安全技术内幕[M].北京:机械工业出版社,西蒙与舒斯特国际出版公司,1999,4.105-127.
  • 3前导工作室,网络安全技术内幕.,1999年,105~127页
  • 4Richard Stevens W,http://www.cert.org/
  • 5KRUEGEL C, TOTH T. Using decision trees to improve signature based intrusion detection [ C ]//Proc of the 6th International Workshop on the Recent Advances in Intrusion Detection (RAID). USA: Springer-Verlag, 2003:173-191.
  • 6RUGGIERI S. Efficient C4. 5 [ J ]. IEEE Trans on Knowledge and Data Engineering, 2002,14 ( 2 ) :438-444.
  • 7DARPA 1998 data set[ EB/OL]. [2005 ]. http://www. Ⅱ. mit. edu/ IST/ideval/data/1998/1998 data index, html.
  • 8LEE W. A data mining framework for constructing features and models for intrusion deteetion systems [ D]. New York: Columbia University, 1999:22-26.
  • 9FIELDING R, GETTYS J, MOGUL J, et al. HTTP/1. 1 RFC 2616, Hypertext transfer protocol[S]. 2006.
  • 10HAN Jian-wei, KAMBER M. Data mining concepts and techniques [M]. Beijing : China Machine Press, 2000 : 188-194.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部