期刊文献+

差动自感式磁流变阻尼器绕线缸体对磁场特性的影响分析 被引量:2

Influencing of Winding Cylinder of Differential Self-induced Magnetorheological Damper on Magnetic Characteristics
下载PDF
导出
摘要 针对差动自感式磁流变阻尼器中的绕线缸体结构参数对阻尼器工作磁场和感应磁场的影响进行电磁场有限元仿真分析。通过横向对比由导磁材料和不导磁材料制成的绕线缸体应用不同结构参数所产生的磁场强度和感应电动势,得到材料参数、结构参数与磁场的关系。分析结果表明:随着缸体厚度增加,工作磁场强度最大值降低,但在导磁材料缸体中的平均磁场强度明显提高;绕线区深度增加会显著提高感应电动势幅值,但会显著降低最大磁场强度、削弱磁化能力。根据以上结论,可分别从满足磁化强度要求及满足感应电动势幅值需求两方面入手,优化差动自感式磁流变阻尼器绕线缸体结构参数,达到满足预期条件的目的。 In order to solve the problems that the working magnetic fields and induced magnetic fields of the differential self-in- duced magnetorheological damper (DSMRD) were influenced by the structure parameters of the winding cylinder, the finite element model was established. By comparing the magnetic fields and induced voltage amplitude in different kinds of materials and structure pa- rameters of winding cylinder, the relationships among materials, structure parameters and magnetic fields were obtained. The simula- tion results show that the maximum values of the working magnetic field will decrease with the increasing of the thickness of the cylinder body, however, the average magnetic field in the cylinder body with magnetic material will increase. On the other hand, the induced voltage amplitude will increase with the increasing of the depth of the winding cylinder, but the maximum value of the magnetic field will decrease. Finally, the optimized DSMRD was obtained.
出处 《机床与液压》 北大核心 2013年第13期9-12,共4页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51165005) 浙江大学流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-201207) 江西省教育厅科学技术研究项目(GJJ13341) 江西省对外科技合作计划项目(20132BDH80001)
关键词 差动自感式磁流变阻尼器 绕线缸体 结构参数 磁场分析 Differential self-induced magnetorheological damper Winding cylinder Structure parameters Magnetic field analysis
  • 相关文献

参考文献7

  • 1LI W H, WANG X Y, ZHANG X Z, et al. Development and Analysis of a Variable Stiffness Damper Using an MR Blad- der[ J ]. Smart Materials and Structures ,2009,18 (7) : 1 - 8.
  • 2DAVID S N, STEPHEN W S, ARNOLD F S, et al. Magne- tostrictive Linear Displacement Transducer for a Shock Ab- sorber: US 5952823 [ P]. 1999 - 09 - 14.
  • 3WANG D H, WANG T. Principle, Design and Modeling of an Integrated Relative Displacement Self-sensing Magneto- rheological Damper [ J ]. Smart Materials and Structures, 2009,18(9) :1 -20.
  • 4WANG D H, BAI X X, Liao W H. An Integrated Relative Displacement Self-sensing Magnetorheological Damper: Prototyping and Testing [ J ]. Smart Materials and Struc- tures ,2010,19 (10) : 1 - 19.
  • 5胡国良,茹毅.差动自感式磁流变阻尼器感应特性研究[J].液压与气动,2012,36(10):84-88. 被引量:5
  • 6PENG G R, LI W H, HUG L. Design and Simulation of a Self-sensing MR Damper[ C ]//The 15th International Con- ference on Mechatronics Technology (ICMT 2011 ). Mel- bourne, Australia, 2011.
  • 7CARLSON J D. MR Fluids and Devices in the Real World [ J]. International Journal of Modem Physics B,2005,19 (7) :1463 - 1470.

二级参考文献4

  • 1S. N. David, W. S. Stephen, F. S. Arnold, et al. Magnetostrictire Linear Displacement Transducer for a Shock Absorber: US 5952823 [ P]. 1999 - 09 - 14.
  • 2D. H. Wang, T. Wang. Principle, Design and Modeling of an Integrated Relative Displacement Self-sensing Magnetorheological Damper[J]. Smart Materials and Structures ,2009,18 (9) :1 -20.
  • 3D. H. Wang, X. X. Bai, W. H. Liao. An Integrated Relative Displacement Self-sensing Magnetorheological Damper: Prototyping and Testing [ J ]. Smart Materials and Structures, 2010,19(10) :1 - 19.
  • 4MRF-132DG Magneto-Rheological Fluid[ EB/OL]. [2012 - 03 -25 ]. http://www, lord. corn/products-and-solutions/ magneto-rheological- ( mr )/product. xml/1645.

共引文献4

同被引文献26

  • 1李忠献,徐龙河.新型磁流变阻尼器及半主动控制设计理论[M].北京:科学出版社,2012.
  • 2David S. N, Stephen W. S, Arnold F. S, et al. Magnetostric- tire Linear Displacement Transducer for Ashock Absorber: USA ,5952823 [ P ]. 1999 - 09 - 14.
  • 3D. H. Wang,T. Wang. Principle, Design and Modeling of an Integrated Relative Displacement Self-sensing Magnetorheo- logical Damper based on Electromagnetic Induction [ J ]. Smart Materials and Structures,2009,18 (9) : 1 - 20.
  • 4D. H. Wang, X. X. Bai, W. H. Liao. An Integrated Relative Displacement Self-sensing Magnetorheological Damper: Pro- totyping and Testing [ J ]. Smart Materials and Structures, 2010,19(10) :1 - 19.
  • 5JOLLY M R, BENDER J W, CARLSON J D. Properties and Applications of Commercial Magnetorheological Fluids[J]. Journal of Intelligent Material Systems and Structures, 1999,10(1 ) :5 - 13.
  • 6ZHU X C, JING X J, CHENG L. Magnetorheological Fluid Dampers:A Review on Structure Design and Analysis [ J ]. Journal of Intelligent Material Systems and Structures, 2012,23 (8) :839 - 873.
  • 7YAO G Z, YAP F F, CHEN G, et al. MR Damper and its Application for Semi-active Control of Vehicle Suspension System, Mechatronics, 2002,12 (7) :963 - 973.
  • 8LEE U, KIM D, HUR N, et al. Design Analysis and Experi- mental Evaluation of an MR Fluid Clutch[ J]. Journal of In- telligent Material Systems and Structures, 1999, 10 ( 9 ) : 701 - 707.
  • 9PARLAK Zekeriya, ENGIN Tahsin, CALLI Ismail. Optimal Design of MR Damper Via Finite Element Analyses of Flu- id Dynamic and Magnetic Field [ J ]. Mechatronics, 2012, 22(6) :890 -903.
  • 10YOSHIOKA H, RAMALLO J C, SPENCER JR B F. "Smart" Base Isolation Strategies Employing Magnetorheo- logical Dampers [ J ]. Journal of Engineering Mechanics, 2002,128 (5) :540 - 551.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部