期刊文献+

K_2(9~1∑^+_g)高位电子态与H_2碰撞中H_2的能量分布

Energy Distributions of H_2 in Collisions between High Lying K_2(9~1∑^+_g) and H_2
原文传递
导出
摘要 光学-光学双共振激发K2到91∑+g高位态,研究了K2(91∑+g)与H2的电子-振转碰撞能量转移。利用相干反斯托克斯(CARS)光谱技术探测H2的振转态分布,扫描CARS谱表明H2在(1,1)、(2,1)、(2,2)、(3,1)、(3,2)、(3,3)和(3,5)能级上有布居。由时间分辨CARS轮廓得到H2各振转能级上粒子数之比,得到H2的平均振动能和平均转动能分别为9063cm-1和388cm-1。从91∑+g→11∑+u、11∑+u→11∑+g、33∏g→13∑+u跃迁的时间分辨激光感应荧光(LIF)强度得到它们的自发辐射率和碰撞转移率。在H2压强为3×103Pa时,K2(91∑+g)与H2的碰撞转移能为16930cm-1。H2的平均振转能占平均转移能的56%。 The electronic to rovibrational energy transfer between the high-lying 9^1∑g^+ state of K2 and H2 has been investigated. The 9^1∑g^+ state is excited using the optical-optical double resonance. The CARS (Coherent Anti-Stokes Raman Scattering) spectral technique has been used to probe the internal state distribution of collisionally-populated Hz mole- cules. The scanned CARS spectra reveal that H2 molecules are produced at (1,1), (2,1), (2,2), (3,1), (3,2), (3,3) and ( 3,5 ) levels. The actual population ratios are determined through time resolved CARS profiles. The major vibrational energy (9063 cm-l) release and the minor rotational energy (388 cm-1) release are shown. The decay signals of the time-resolved fluorescene [rom 9^1∑g^+→1^1∑u^+、l^1∑u^+→1^1∑g^+ and 3^3Ⅱg→1^3∑u^+ transition are monitored. Based on Stern-Volmer equation, radiative rates and collision transfer rates of three states 9^1∑g^+ ,l^1∑u^+ and 3^3Ⅱg have been determined. In PH2 =3×10^3Pa,the fer energy (16930cm-1) is obtained. The efficiency of the electronic-to-rovibrational transfer is 56% for the K2 9^1∑g^+-H2 system. trans- energy
出处 《光散射学报》 北大核心 2013年第2期116-120,共5页 The Journal of Light Scattering
基金 国家自然科学基金(10964011)
关键词 能量转移 CARS谱 LIF强度 平均振转能 K2-H2 energy transfer CARS spectrum LIF intensity average rovibrational energy K2- H2
  • 相关文献

参考文献9

  • 1Tran H,Chaussard F,Cong N Le,et al.Femto-second time resolved coherent anti-Stokes Raman spectroscopy of H(2)-N(2)mixtures in the Dicke regime:Experiments and modeling of veloci-ty effects[J].J Chem Phys,2009,131(17):174310/1-6.
  • 2Correia R R B,Pichler G,Cunha S L,et al.The role of nuclear spin in inelastic Na(3p)+H 2 col-lisions[J].Chem Phys Letters,1990,175(4):354-358.
  • 3Chen M L,Lin W C,Luh W T.Electronic to vibrotional energy transfer between Rb(5 2 P J)and H 2[J].J Chem Phys,1997,106(4):5972-5978.
  • 4Kabir M H,Antonov I O,Heaven M C.Probing rotational relaxation in HBr(v=1)using double resonance spectroscopy[J].J Chem Phys,2009,130:074305/1-11.
  • 5王青,沈异凡,戴康.激发态Cs_2和H_2的电子—振转能级的碰撞转移[J].光散射学报,2011,23(1):10-14. 被引量:5
  • 6Magnier S,MilliéPh.Potential curves for the ground and numerous highly excited electronic states of K 2 and NaK[J].Phys Rev,1996,A54(1):204-218.
  • 7Hering P,Cunha S L,Kompa K L.Coherent an-ti-stokes Rman spectroscopy study of the energy partitioning in the sodium(3P)-hydrogen collision pair with red wing excitation[J].J Phys Chem,1987,91:5459-5462.
  • 8朱冬辉,张彬,沈异凡,戴康.激发态H_2(X^1∑_g^+,v=1,J=1)之间的碰撞能量合并[J].光散射学报,2011,23(4):306-310. 被引量:1
  • 9Krzysztof P,Jacek K.Nonadiabatic corrections to rovibrational levels of H 2[J].J Chem Phys,2009,130:164113/1-11.

二级参考文献20

  • 1Jabbour Z J,Huennekens J.A study of the predissociation of NaK molecules in the 6 1+ state by optical-optical double resonance spectroscopy[J].Chem.Phys.,1997,107(4):1094-1105.
  • 2Polly R,Gruber D,Windholz L,et al.Collision-induced fluorescence of Cs2:the 31 ∑ u+ →X1 ∑ g+system[J].Chem.Phys.Letters,1996,249:174-182.
  • 3George W,FlynnCharles S,ParmenterAlec M.Wodtke,Vibrational Energy Transfer[J].Chem.Phys.,1996,100(31):12817-12838.
  • 4Qingnan Liu,Juan Du,Daniel K.Havey,et al.Alkylation effects on strong collisions of highly vibrationally excited alkylated pyridines with CO2[J].Chem.Phys.,2007,Alll(19):4073-4080.
  • 5Chang Y P,Hsiao M K,Liu D K,et al.Rotational and vibrational state distributions of NaH in the reactions of Na(42S,32D,and 62S) with H2:Insertion versus harpoon-type mechanisms[J].Chem.Phys.,2008,128:234309-234315.
  • 6Yuan L W,Du J,Mullin A S.Energy-dependent dynamics of large-E collisons:Highly vibrationally excited azulene (E= 20390 and 38580 cm-1)with CO2[J].Chem.Phys.,2008,129:014303-014314.
  • 7Vacla C,Horvatic V,Niemax K.Radiation transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He[J],Spectrochim.Acta,2003,B53:1235-1277.
  • 8Hering P,Cunha S L,Kompa K L.Coherent anti-Stokes Raman spectroscopy study of the energy partitioning in the sodium(3P)-hydrogen collision pair with red wing excitation[J].Chem.Phys.,1987,91(21):5459-5462.
  • 9Chen M L,Lin W C,Luh W T.Electronic to vibrational energy transfer between Rb(5 2PJ) and H2[J].Chem.Phys.,1997,106(14):5972-5978.
  • 10FanLH,Chen J J,LinYY,et al.Reaction of Rb(52D,72S) with H2[J].Chem.Phys,1999,A103:1300-1305.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部