期刊文献+

基于S2AFCM的子主题划分

Sub-topic Partition Based on S2AFCM
下载PDF
导出
摘要 为了能生成高质量的自动文摘,最优子主题划分非常必要。在介绍现有子主题划分方法的基础上,提出了一种基于S2AFCM的子主题划分方法。首先将文档以段落为单位进行向量化,然后使用S2AFCM对各段落向量进行自适应模糊聚类计算,得到隶属度矩阵,从而得到文档的最优子主题划分。实验结果表明,该方法有效地提高了子主题的识别率。 In order to generate high quality automatic summarization, the optimal sub-topic partition is very important. Based on the introduction of existing sub-topic partition method, the sub-topic partition based on S2AFCM method is proposed. Firstly, the document is quantified in paragraphs, and then the adaptive fuzzy clustering algorithm is performed for each paragraph vector using S2AFCM to obtain the membership matrix, so as to get the optimal sub-topic partition of document. The experimental results show that this method can improve the recognition rate of sub-topic partition effectively.
作者 王思翠
机构地区 昆明理工大学
出处 《计算机与网络》 2013年第11期61-63,共3页 Computer & Network
关键词 子主题划分 FCM聚类算法 S2AFCM聚类算法 隶属度矩阵 sub-topic partition fuzzy c-means (FCM) clustering algorithm section set adaptive fuzzy c-means (S2AFCM) clustering algorithm membership matrix
  • 相关文献

参考文献6

二级参考文献28

  • 1董云影,张运杰,畅春玲.改进的遗传模糊聚类算法[J].模糊系统与数学,2005,19(2):128-133. 被引量:16
  • 2唐明珠,张远平,杨佳.一种基于概念相似度的文本模糊聚类方法[J].科学技术与工程,2007,7(5):727-730. 被引量:4
  • 3RADEV D R, JING H Y. MBUDZIKKOWSKA Malgorzata. Centroid-based summarization of muhiple documents: sentence extraction, utility-based evaluation, and user studies [ A ]. SIDNER C. ANLP/NAACL 2000 Workshop [ C ]. Washington: ANLP/NAACL2000, 2000:21 - 29.
  • 4LIN C Y, HOVY E. From single to multi-document summarization: a prototype system and its Evaluation[ A ]. ISABELLE Pe. Proceeding of the dOth anniversary meeting of the association for computational linguistics(ACL-02) [ C ]. Philadephia, USA : The Computer and Information Science Department and the Institute for Research in Cognitive Science University of Pennsylvania,2002:25 - 34.
  • 5RADEV D R, McKEOVWN K R. Generating natural languages summaries from multiple on-line sources [ J ]. Computational Linguistics, 1998,24(3 ) :21 - 29.
  • 6HARABAGIU S M, MAIORANO S J. Multi-document summarization with GISTexter [ A]. ZAMPOLLI A. Proceedings of the Third LREC Conference 2002 ( LREC 2002) [ C ]. Canary Islands, Spain: LREC2002 ,2002 :65 - 68.
  • 7FILATOVA E, HATZIVASSILOGLOU V. Event-based extractive summarization [ A ]. Proceedings of ACL Workshop on summarization [ C ]. Barcelona, Span : ACL2004,2004 : 319 - 398.
  • 8BOROS E, KANTOR P B, NEU D .l. A clustering based approach to creating multi-document summaries [ A ]. KRAFTD H. Proceedings of the 24th Annum International ACM SIGIR Conference: On Research and Development in Information Retrieval [ C ]. New Orleans, LA : ACM2001,2001 : 240 - 245.
  • 9FUMG P, NGAI G, CHEUNG C S. Combining optimal clustering and hidden Markov model for extractive summarization[ A ]. JOHNSON M. Proceedings of the ACL 2003 Workshop on Muhilingual Summarization and Question Answering [ C ]. Sapporo, Japan: ACL2003 ,2003 :21 - 28.
  • 10秦兵,刘挺,高晔.多文档集合中逻辑主题的确定[A].中国中文信息学会.第一届全国信息检索与内容安全学术会议论文集[C].北京:中国中文信息学会,2004:230-235.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部