期刊文献+

用于强海杂波中目标检测的自适应波形设计算法 被引量:3

Algorithm of Adaptive Waveform Design for Target Detection in Strong Sea Clutter
下载PDF
导出
摘要 针对强海杂波中的目标检测问题,对一种自适应波形设计算法进行了仿真研究.该算法首先利用期望最大化算法估计预测目标所在单元的海杂波统计特性,然后利用子空间方法实现海杂波抑制,最后以最大化广义似然比为准则,通过动态设计相位编码波形来匹配海杂波统计特性,以改善目标信杂比,进而改善目标检测性能.通过数值仿真验证了算法的有效性.仿真结果表明,与采用固定波形相比,采用自适应波形设计算法对于目标检测性能的改善程度可达7~10dB. Aimed at the target detection in strong sea clutter, this paper studies and simulates a sort of adaptive waveform designing algorithm. In this algorithm, at first, the statistical property of sea clutter of the unit, where the predicted target is located, is estimated by means of expectation-maximization algorithm, the suppression of sea clutter is next implemented by using the sub-space method, and finally, the ratio of signal to clutter of the target is improved by dynamically designing phase coding waveform for matching the statistical property of sea clutter, thus improving the performance of target detection. By numerical simulation, this proposed algorithm proves to be effective. Simulation results show that the improvement degree of target detection performance can be up to 7-10 dB by using the adaptive waveform designing algorithm, compared with the fixed waveform.
出处 《空军预警学院学报》 2013年第3期177-180,共4页 Journal of Air Force Early Warning Academy
关键词 波形捷变 海杂波 目标检测 期望最大化算法 子空间 waveform agility sea clutter target detection expectation maximization algorithm subspace
  • 相关文献

参考文献3

  • 1DEMPSTER A,LAIRD N,RUBIN D. Maximum likeli-hood estimation from incomplete data via the EM algo-rithm[J].Journal of the Royal Statistical Society:Series B,1977,(01):1-38.
  • 2WANG J,DOGANDZIC A,NEHORAI A. Maximum likelihood estimation of compound-Gaussian clutter and target parameters[J].{H}IEEE Transactions on Signal Processing,2006,(10):3884-3898.doi:10.1109/TSP.2006.880209.
  • 3SANGSTON K J,GERLACH K R. Coherent detection of radar targets in a non-Gaussian background[J].{H}IEEE Transactions on Aerospace and Electronic Systems,1994,(02):330-340.doi:10.1109/7.272258.

同被引文献23

  • 1刘杰,何伍福,王国宏,关成斌.基于统计模型的海杂波建模和检测技术综述[J].海军航空工程学院学报,2006,21(3):347-352. 被引量:12
  • 2FINN H M, JOHNSON R S. Adaptive Detection Mode with Threshold Control as a Function of Spa- tially Sampled Clutter-Level Estimates[J]. RCA Re view, 1968o 29(9) :414-464.
  • 3HANSEN V G. Constant False Alarm Rate Process- ing in Search Radars [C]//IEEE International Radar Conference, I.ondon:s.n., 1973:325-332.
  • 4TRUNK G V. Range Resolution of Targets UsingAutomatic Detectors[J]. IEEE Trans on AES, 1978, 14(5) :750-755.
  • 5BARKAT M, VARSHNEY P K. A Weight Cell-Av- eraging CFAR Detector for Multiple Target Situation [C] // Proceedings of the 21" Annual Conference on Information Sciences and Systems, Baltimore, Mary- land:[-s, n. 1, 1987:118-123.
  • 6ROHLING H. Radar CFAR Thresholding in Clutter and Multiple Target Situations[J]. IEEE Trans on AES, 1983, 19(4):608-621.
  • 7. GOLDMAN H. Analysis and Application of the Exci- sion CFAR Deteetor[J]. lEE Proceedings of Radar and Signal Proceeding, 1988,135(6) :563-575.
  • 8CONTE E, MAIO A D. Mitigation Techniques for Non-Gaussian Sea Clutter[J]. IEEE Journal of Oce- anic Engineering, 2004, 29(2) : 284-302.
  • 9CANDAN C. Analysis and Further Improvement of Fine Resolution Frequency Estimation Method from Three DFT Sample[J]. IEEE Signal Processing Let- ters, 2013, 20(9):913-916.
  • 10CAPRARO C T, CAPRARO G T, WICKS M C. Knowledge Aided Detection and Tracking[C] // IEEE Radar Conference, Boston, MA: IEEE, 2007: 352- 356.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部