期刊文献+

乙二醛存在时脲醛树脂的控制性聚合现象 被引量:1

UREA FORMALDEHYDE POLYMERIZATION CONTROLLED BY USING GLYOXAL
原文传递
导出
摘要 考察了乙二醛存在时脲醛树脂的控制性聚合现象.聚合微球的粒径分散在1.0~14μm之间,但当乙二醛存在时粒径集中在6.5~9.0μm;控制乙二醛的用量和比例可以调整所得微球的大小、改善微球的形貌和均匀性.添加乙二醛或增加乙二醛的比例能大幅延长沉淀反应的诱导期(延长25%以上);红外分析以及XRD分析结果证明醛基总量或甲醛比例的增加都可减小聚合产物的结晶性特征;乙二醛的存在调整了脲醛树脂的成核过程或初级粒子的生长速度,推测乙二醛覆盖了聚合物的表面或表面活性位,限制了尿素甲醛的扩散反应过程.乙二醛存在时杂化过程所得氧化硅微球的粒径仅为杂化微球的20%,分析结果推测杂化微球中存在氧化硅的径向含量梯度,这种梯度是氧化硅纳米粒子的杂化和脲醛树脂的聚合速度差异造成的. The urea formaldehyde polymerization controlled by using glyoxal was investigated. The sizes of the resin microspheres were in the range of 1.0 - 14 υm, and the size range was 6.5 - 9.0 υm in the presence of glyoxal. Sizes and morphology of the resin microspheres could be adjusted or improved with altering the aldehyde amount or glyoxal ratio in the reaction. Addition of glyoxal or increment of its ratio in the reaction significantly extend the induction time of precipitation (more than 25% longer). Infrared and XRD analyses show that the increment of both the aldehydes or the formaldehyde proportion can reduce the crystallization characteristics of polymers. Glyoxal is able to adjust the nucleation of urea formaldehyde resin or the growth of the primary particles,it was considered that the glyoxal covered the polymer surface or the active sites,limiting the diffusion of urea formaldehyde. The average size of silica microspheres prepared under the presence of glyoxal is only 20% of that of their precursor hybrids. A radial silica content gradient in the hybrid microspheres was suggested,which might result from the rate differences between silica hybridization and urea formaldehyde resin polymerization.
机构地区 同济大学化学系
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2013年第7期878-887,共10页 Acta Polymerica Sinica
基金 上海市自然科学基金(基金号09ZR1434100) 国家自然科学基金(基金号20703031)资助项目
关键词 脲醛树脂 微球 乙二醛 杂化 二氧化硅 Urea formaldehyde resin Microsphere Glyoxal Hybrid Silica
  • 相关文献

参考文献26

  • 1Iler R K,McQueston H J.US patent,B01J13/14,4010242.1977-03-01.
  • 2Carr P W,Funkenbusch E F,Rigney M P,Coleman P L,Hanggi D A,Schafer W A.US patent,B01J20/06,5015373.1991-05-14.
  • 3Pesek J J,Matyska M T,Williamsen E J,Evanchic M,Hazari V,Konjuh K,Takhar S,Tranchina R J.Chromatographia,1997,786:219-228.
  • 4Carr P W,McCormick A V,Annen M J,Sun L,Brown J R.US patent,B01J20/02,5540834.1996-07-30.
  • 5Hao Zhixian(郝志显),Wu Pengfei(武鹏飞),Li Zheng(李铮),Luo Hao(罗浩),Zhu Zhirong(朱志荣),Lin Rui(林瑞).化学学报,2010,68:309-314.
  • 6Birinci E,Gülfen M,Aydn A O.Hydrometallurgy,2009,95:15-21.
  • 7Ertan E,Gülfen M J.Appl Polym Sci,2009,111:2798-2805.
  • 8Ni C H,Yi C H,Feng Z Y.J Appl Polym Sci,2001,82:3127-3132.
  • 9Panahi H A,Sharif A A M,Bigonah M,Moniri E J.Chem Eng,2009,26:1723-1728.
  • 10Zuo G J,Mamoun M.React Funct Polym,1995,24:165-181.

二级参考文献10

共引文献12

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部