期刊文献+

求解初值问题的指数拟合RKNd方法(英文) 被引量:1

Exponentially Fitted RKNd Methods for Solving Oscillatory ODEs
原文传递
导出
摘要 本文给出了求解初值问题的指数拟合的RKNd方法.此类方法对于解可以表示为函数{exp(λt),exp(-λt)},λ∈C,或{sin(ωt),cos(ωt)},其中λ=iω,ω∈R之线性组合的微分方程精确成立.数值试验表明,指数拟合RKNd方法的计算效率要优于指数拟合RK方法和RKNd方法. In this paper, we derive the exponentially fitted RKNd methods for solving oscillatory ODEs. The new methods integrate exactly differential systems whose solutions can be expressed as linear combinations of functions from the Set {exp(λt),exp(-λt)}, λ∈C, or equivalently, {sin(ωt),cos(ωt)} when λ = iω, ω∈R. Numerical experiments are accompanied to show the efficiency and competence of the exponentially fitted RKNd methods compared with some exponentially fitted RK methods and RKNd methods.
出处 《数学进展》 CSCD 北大核心 2013年第3期393-404,共12页 Advances in Mathematics(China)
关键词 RKNd方法 指数拟合 稳定性 耗散 效率 振荡 RKNd method exponentially fitted stability dissipation efficiency oscillatory
  • 引文网络
  • 相关文献

参考文献1

二级参考文献8

  • 1Butcher J C.Numerical Methods for Ordinary Differential Equations,second edition[M].John Wiley and Sons,2008.
  • 2Butcher J C.On the attainable order of Runge-Kutta methods[J].Math.of Comp.,1965,19:408-417.
  • 3Butcher J C.The non-existence of ten stage eighth order explicit Runge-Kutta methods[J].BIT,1985 25:521-540.
  • 4Dooren R V.Stabilization of Cowell's classical finite difference method for numerical integration[J].Comput.Phys.,1974,16:186-192.
  • 5Goeken D,Johnson O.Runge-Kutta with higher order derivative approximations[J].Appl.Numer.Math.,2000,34:207-218.
  • 6Hairer E,N()rsett S P,Wanner G.Solving ordinary differential equations I,Nonstiff problems[M].Springer-Verlag,1993.
  • 7Houwen P J,Sommeijer B P.Explicit Runge-Kutta(-Nystr(o)m)methods with reduced phase error for computing oscillating solutions[J].SIAM J.Numer.Anal.,1987,24:595-617.
  • 8Vyver H V.A Runge-Kutta-Nystr(o)m pair for the numerical integration of perturbed oscillators[J].Comput.Phys.Commun.,2005,167:129-142.

共引文献3

同被引文献2

引证文献1

;
使用帮助 返回顶部