期刊文献+

部分Hénon型方程组解的渐近性(英文)

Asymptotic Behavior of Solutions for Part Hénon Type Systems
下载PDF
导出
摘要 本文主要讨论部分Hénon型方程组解的渐近性,其中Ω=Bk(0,1)×Bn-k(0,1)Rn及x=(y,z)∈Rk×Rn-k.我们研究当n≥3,2<p+q<2*=2n/(n-2)且p+q趋于临界指数2*=2n/(n-2)时方程组的基态解的渐近性及当2<p+q<2*且α→+∞时解的渐近性. In this paper,we study part Henon type systems …… where Ω = B^k (0,1) × Bn-k (0,1) С R^n and x = (y, z) ∈ R^k × R^n-k. We investigate the asymptotic behavior of the ground state solution of systems when 2 〈 p+q 〈 2*= 2n/(n-2) and p+ q tends to the critical exponent 2*=2n/(n - 2) if n ≥ 3 as well as the asymptotic behavior of solutions when a tends to + oo if 2 〈 p + q 〈 2*. Key words: Part H6non type system; Critical exponent ; Asymptotic behavior
作者 朱誉 龙薇
出处 《应用数学》 CSCD 北大核心 2013年第3期482-498,共17页 Mathematica Applicata
基金 Supported by the NSF of China(11271170) the NSF of Jiangxi Province(20132BAB211004) the Youth Foundation of Jiangxi Provincial Education Department(GJJ12205)
关键词 部分Hénon型方程组 临界指数 渐近性 Part H6non type system Critical exponent Asymptotic behavior
  • 相关文献

参考文献22

  • 1Alves C O,De Morais Filho D C,Souto M A S. On systems of elliptic equations involving subcritical of critical Sobolev exponents[J].Nonlinear Anal,2000.771-787.
  • 2Berestycki H,Lions P L. Nonlinear scalar field equations Ⅰ and Ⅱ[J].Arch Rational Mech Anal,1983.313-376.
  • 3Bhakta M,Sandeep K. Hardy-Sobolev-Mazya type equations in bounded domains[J].{H}Journal of Differential Equations,2009.119-139.
  • 4Byeon J,WANG Zhiqiang. On the Hénon equation::asymptotic profile of ground states Ⅰ[J].Ann Inst H Poincare Anal Non Lineaire,2006.803-828.
  • 5Byeon J,WANG Zhiqiang. On the Hénon equation:asymptotic profile of ground states Ⅱ[J].{H}Journal of Differential Equations,2005.78-108.
  • 6CAO Daomin,PENG Shuangjie. The asymptotic behavior of the ground state solutions for Hénon equation[J].{H}Journal of Mathematical Analysis and Applications,2003.1-17.
  • 7CAO Daomin,PENG Shuangjie,YAN Shusen. Asymptotic behaviour of ground state solutions for the Hénon equation[J].{H}IMA Journal OF APPLIED MATHEMATICS,2009.468-480.
  • 8Castorina D,Fabbri I,Mancini G,Sandeep K. Hardy-Sobolev inequalities,hyperbolic symmetry and the Webster scalar curvature problem[J].{H}Journal of Differential Equations,2009.1187-1206.
  • 9Castorina D,Fabbri I,Mancini G,Sandeep K. Hardy-Sobolev inequalities and hyperbolic symmetry[J].Atti Accad Naz Lincei C1 Sci Fis Mat Natur Rend Lincei (9) Mat Appl,2008,(3):189-197.
  • 10Fabbri I,Mancini G,Sandeep K. Classification of solutions of a critical Hardy-Sobolev operator[J].{H}Journal of Differential Equations,2006,(2):258-276.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部