摘要
本文主要讨论部分Hénon型方程组解的渐近性,其中Ω=Bk(0,1)×Bn-k(0,1)Rn及x=(y,z)∈Rk×Rn-k.我们研究当n≥3,2<p+q<2*=2n/(n-2)且p+q趋于临界指数2*=2n/(n-2)时方程组的基态解的渐近性及当2<p+q<2*且α→+∞时解的渐近性.
In this paper,we study part Henon type systems …… where Ω = B^k (0,1) × Bn-k (0,1) С R^n and x = (y, z) ∈ R^k × R^n-k. We investigate the asymptotic behavior of the ground state solution of systems when 2 〈 p+q 〈 2*= 2n/(n-2) and p+ q tends to the critical exponent 2*=2n/(n - 2) if n ≥ 3 as well as the asymptotic behavior of solutions when a tends to + oo if 2 〈 p + q 〈 2*. Key words: Part H6non type system; Critical exponent ; Asymptotic behavior
出处
《应用数学》
CSCD
北大核心
2013年第3期482-498,共17页
Mathematica Applicata
基金
Supported by the NSF of China(11271170)
the NSF of Jiangxi Province(20132BAB211004)
the Youth Foundation of Jiangxi Provincial Education Department(GJJ12205)