期刊文献+

四阶椭圆边值问题的对称扰动(英文)

Perturbations from Symmetric Fourth Elliptic BoundaryValue Problems
下载PDF
导出
摘要 我们研究四阶椭圆边值问题其中ε是一个参数,Ω是RN中的有界光滑区域,f∈C(Ω×R),f(x,t)关于t是奇的,且g∈C(Ω×R).在设有"Ambrosetti-Rabinowitz's超二次条件"下,用对称型山路理论获得问题一的无穷多解.此外,对f施加适当条件,我们能证明:对任意j∈N,存在εj>0,使得如果|ε|≤εj,则第二个问题至少有j个不同的解. We consider the multiplicity of solutions for the fourth-order elliptic problems …… where ε is a parameter, Ω2 is a smooth bounded domain in R^N ,f ∈ C(Ω×R) ,f(x,t) is odd with respect to t, and g ∈ C(Ω × R). Using symmetric mountain pass theorem and analytic technique we obtain infinitely many solutions for the first problem under no Ambrosetti-Rabinowitz's superquadratic condition. Moreover, under suitable conditions only on f, we prove that for any j ∈ N there exists εj 〉 0 such that if |ε| ∈εj, then the above second problem possesses at least j distinct solutions.
出处 《应用数学》 CSCD 北大核心 2013年第3期677-685,共9页 Mathematica Applicata
基金 Support of the National Natural Science Foundation of China(11001221) the Founda-tion of Shaanxi Province Education Department(2010JK549) the Foundation of Xi'an Statistical Research Institute(10JD04)
关键词 扰动 对称 椭圆边值问题 多重解 Perturbation Symmetry Elliptic boundary value problem Multiple solution
  • 相关文献

参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部