期刊文献+

Shimiza-Morioka系统异宿轨道存在性证明

Existence of heteroclinic orbit in Shimiza-Morioka system
下载PDF
导出
摘要 针对Shimiza-Morioka系统用待定系数法证明了其系统中存在异宿轨道的存在性。首先将Shimiza-Mo-rioka系统转换为只含一个变量的非性线微分方程;然后证明该非线性微分方程存在一个指数形式的无穷级数展开式表示的异宿轨道;最后证明了该无穷级数展开式一致收敛性,结合Si’lnikov不等式,证明了该系统中存在Smale马蹄,因而是Si’lnikov意义下的混沌。最终,异宿轨道决定Shimiza-Morioka系统中混沌吸引子的几何结构。 This paper applied the undetermined coefficient method to prove the existence of heteroclinic orbit in Shimiza-Mo-rioka system.First of all,it converted the Shimiza-Morioka system to a nonlinear differential equation with only one variable.Secondly,it verified the nonlinear differential equation to have a heteroclinic orbit expressed by the infinite series expansion with the exponential form.Finally,it proved the uniform convergence of the series expansion of the heteroclicic.Combining the existence of heteroclinic orbit with Si’lnikov inequalities,Smale horseshoses has been found in the Shimiza-Morioka system,and it is chaotic in the sense of Si’lnikov.As a result,it is this heteroclinic orbit that determines the geometric structure of the Shimiza-Morioka chaotic attractor.
出处 《计算机应用研究》 CSCD 北大核心 2013年第7期2021-2023,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61106019) 广东省"省部产学研结合项目"专项资金资助项目(2011B090400408 2011B090400621) 东莞职业技术学院科技基金资助项目(2011b08 2011c23)
关键词 Shimiza-Morioka系统 异宿轨道 Si’lnikov定理 待定系数法 斯梅尔马蹄 Shimiza-Morioka system hetheroclinic orbit Si’lnikov theorem undetermined coefficient method Smale horseshoe
  • 相关文献

参考文献17

  • 1WU Xiang-jun,LU Hong-tao. Adaptive generalized function projective lag synchronization of different chaotic systems with full uncertain parameters[J].Chaos,Solitons and Fractals,2011,(10):802-810.
  • 2张兴华,丁守刚.非均匀气隙永磁同步电机的自适应混沌同步[J].控制理论与应用,2009,26(6):661-664. 被引量:33
  • 3WANG Cheng-chi,PAI Neng-sheng,YAU H T. Chaos control in AFM system using sliding mode control by backstepping design[J].Communications in Nonlinear Science and Numerical Simulation,2010,(03):741-751.
  • 4LI Long-suo,YU He-dan. Chaos control of a class of parametrically excited Duffing's system using a random phase[J].Chaos,Solitons and Fractals,2011,(07):498-500.
  • 5YAN Ke-song,ZENG Fan-ping,ZHANG Geng-rong. Devaney's chaos on uniform limit maps[J].Chaos,Solitons and Fractals,2011,(07):522-525.
  • 6CAI Na,JING Yuan-wei,ZHANG Si-ying. Modified projective synchronization of chaotic systems with disturbances via active sliding mode control[J].Communications in Nonlinear Science and Numerical Simulation,2010,(06):1613-1620.
  • 7ZHOU Tian-shou,TANG Yun,CHEN Guan-rong. Chen's attractor exists[J].Internatioanl Joumal on Bifurcation and Chaos,2004,(09):3167-3177.doi:10.1142/S0218127404011296.
  • 8JIANG Yong-xin,SUN Jian-hua. Si'lnikov homoclinic orbits in a new chaotic system[J].Chaos,Solitons and Fractals,2007,(01):150-159.
  • 9ZHOU Tian-shou,CHEN Guan-rong,YANG Qi-gui. Constructing a new chaotic system based on the Si'lnikov criterion[J].Chaos,Solitons and Fractals,2004,(04):985-993.
  • 10CHEN Bao-ying,ZHOU Tian-shou. Si'lnikov homoclinic orbits in two classes of 3D autonomous nonlinear systems[J].International Journal on Bifurcation and Modern Physics B,2011,(20):2697-2712.

二级参考文献12

  • 1朱海磊,陈基和,王赞基.利用延迟反馈进行异步电动机混沌反控制[J].中国电机工程学报,2004,24(12):156-159. 被引量:14
  • 2李洁,任海鹏.永磁同步电动机中混沌运动的部分解耦控制[J].控制理论与应用,2005,22(4):637-640. 被引量:25
  • 3朱志宇.基于反馈精确线性化的混沌系统同步控制方法[J].物理学报,2006,55(12):6248-6252. 被引量:15
  • 4PECORA L M, CANOLL T L. Synchronization in chaotic system[J]. Physical Review Letters, 1990, 64(8): 821 - 824.
  • 5CHEN S H, LU J H. Synchronization of an uncertain unified chaotic system via adaptive control[J]. Chaos, Solitions and Fractals, 2002, 14(2): 643-647.
  • 6TAN X H, ZHANG J Y, YANG Y R. Synchronizing chaotic systems using backstepping design[J]. Chaos, Solitions and Fractals, 2003, 16(1): 37 - 45.
  • 7PAR J H, KWON O M. A novel criterion for delayed feedback control of time-delay chaotic systems[J]. Chaos, Solitions and Fractals, 2005, 23(2): 495 - 501.
  • 8SHUNJI ITO, TATSUOa NARIKIYO. Abrasive machining under wet condition and constant pressure using chaotic rotation[J]. Journal of the Japan Society for Precision Engineering, 1998, 64(5): 748 - 752.
  • 9CHAU K T, YE S, GAO Y, et al. Application of chaotic-motion motors to industrial mixing processes[C]//Proceedings of the 39th IAS Annual Meeting, Conference Record of the 2004 IEEE. Seattle: IEEE, 2004, 3: 1874- 1880.
  • 10NEYRAM HEMATI. Dynamic analysis of brushless motors based on compact representations of the equations of motion[C]//Proceedings of the 28th IAS Annual Meeting, Conference Record of the 1993 IEEE. Phoenix: IEEE, 1993, 1:51 - 58.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部