期刊文献+

基于视觉感知的运动目标跟踪算法 被引量:6

Moving object tracking algorithm based on visual perception mechanism
下载PDF
导出
摘要 针对运动目标跟踪问题,为解决跟踪过程中因遮挡、目标尺度变化等易造成跟踪失败的现象,提出一种基于视觉感知的跟踪算法。该算法以神经元响应为视觉特征,首先从自然图像中学习初级视皮层细胞感受野;然后计算背景图像和视频序列图像的神经元响应并得出差值,与动态阈值比较,识别出运动目标,通过迭代实现目标跟踪。多类别实验结果表明,该算法实现了运动目标稳定跟踪,目标跟踪准确率达93.5%且鲁棒性增强,与典型算法Camshift和SIFT相比,提高了跟踪算法的准确性和鲁棒性。 For moving object tracking problems,this paper put forward an object algorithm based on visual perception,in order to solve the tracking failure phenomenon which was caused by the occlusion of tracking process and the change of object scale.This algorithm used neural response as visual features.First of all,it studied primary visual cortex cell receptive field from the natural image and calculated the neurons response of background images and video sequences,and drew the diffe-rence.Then it identified the moving object by comparing with the dynamic threshold value.Finally,it achieved object tracking by iteratively.The multi-category experiment results show that the algorithm achieves tracking of the moving object stability,and that the object tracking’s accuracy rate has achieved 93.5% and its robustness is enhanced.Compared with the typical algorithm,such as the Camshift and the SIFT,this algorithm improves the accuracy and robustness of the tracking algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2013年第7期2199-2201,2205,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60841004 60971110 61172152)
关键词 运动目标跟踪 视觉感知 超完备集 神经元响应 moving object tracking visual perception overcomplete set neural responses
  • 相关文献

参考文献13

  • 1MENG Ling-fei,KEREKES J. Object tracking using high resolution satellite imagery[J].IEEE Joumal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,(01):146-152.
  • 2YIN Ming-hao,ZHANG Jin,SUN Hong-guang. Multi-cue-based Camshift guided particle filter tracking[J].Expert Systems With Applications,2011,(05):6313-6318.
  • 3WANG Zhao-wen,YANG Xiao-kang,XU Yi. Camshift guided particle filter for visual tracking[J].Pattern Recognition Letters,2009,(04):407-413.doi:10.1016/j.patrec.2008.10.017.
  • 4YAO Ming-hai,ZHU Hua,GU Qin-long. SIFT-based algorithm for object matching and identification[A].2011.5317-5320.
  • 5YU Cheng-bo,ZHANG j ing,LIU yu-xuan. Object tracking in the complex environment based on SIFT[A].2011.150-153.
  • 6KOLDOVSKY Z,TICHAVSKY P. Time-domain blind separation of audio sources on the basis of a complete ICA decomposition of an observation space[J].IEEE Trans on Audio Speech and Language Processing,2011,(02):406-416.
  • 7CASALETTI M,MACI S,VECCHI G. A complete set of linear-phase basis functions for scatterers with flat faces and for planar apertures[J].IEEE Transactions on Antennas and Propagation,2011,(02):563-573.
  • 8MOHIMANI H,BABAIE-ZADEH M,JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed e0 norm[J].IEEE Transactions on Signal Processing,2009,(01):289-301.doi:10.1109/TSP.2008.2007606.
  • 9LABUSCH K,BARTH E,MARTINETZ T. Sparse coding neural gas:learning of overcomplete data representations[J].Neurocomputing,2009,(7-9):1547-1555.
  • 10HE Zhao-shui,XIE Sheng-li,ZHANG Li-qing. A note on Lewicki-Sejnowski gradient for learning overcomplete representations[J].Neural Computation,2008,(03):636-643.doi:10.1162/neco.2007.07-06-296.

同被引文献37

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部