期刊文献+

主题演化时间序列中的关键时间点分析 被引量:1

Insightful Time Point Identification Based on Time Series Analysis of Theme Evolution
下载PDF
导出
摘要 主题演化分析在捕捉最新的学术热点和发现重要的科研成果中起着重要作用。文章借鉴信息检索领域中的时间检索方法,提出一种主题演化中关键时间点计算的方法。基于情报学期刊的实验结果表明,该方法可有效地找出某一研究分支中相关主题演化的重要时间段,为从时间角度研究学科演化提供了一种新的方法和思路。 Theme evolution analysis plays an important role in capturing the latest disciplinary hotspot and in finding the significant scientific research achievements. By reference to the temporal information retrieval method in the information retrieval field, this paper proposes a method of calculating the insightful time point in theme evolution. The experimental results based on the jour- nals of information science prove that this method can effectively find the important time period of relevant theme evolution in certain research branch, and provide a new way and idea for studying the disciplinary evolution from the temporal perspective.
作者 沈思 孙立媛
出处 《情报理论与实践》 CSSCI 北大核心 2013年第7期115-118,共4页 Information Studies:Theory & Application
基金 2010年国家自然科学基金项目青年项目"海量语义关联检索的关键问题研究"(项目编号:BK2009136) 江苏省2012年度普通高校研究生科研创新计划项目"基于异构社会网络数据的信息集成与检索研究"(项目编号:CXZZ12_0073)的成果
关键词 时间序列法 主题演化分析 信息检索 关键时间点识别 time series analysis method theme evolution analysis information retrieval insightful time point identification
  • 相关文献

参考文献7

  • 1KONTOSTATHIS A. A survey of emerging trend detection in textual data mining [ C ] //A Comprehensive Survey of Text Mining, Chapter 9. Springer-Verlag, 2003.
  • 2AIDNSO O, STROTGEN J, BAETA-YATES R, et al. Temporal information retrieval: challenges and opportunities [ M ]. [S.l. ]: ACM Press, 2011: 1-8.
  • 3ALONSO O, GERTZ M. Clustering and explo- ring search results using timeline constructions [ C ] //Proceeding CIKM ' 09 Proceedings of the 18th ACM Con- ference on Information and Knowledge Management, 2009.
  • 4DE BOER V. Extracting historical time periods from Web [ J ]. Journal of the American Society for Information Science and Technology, 2010, 61 (9): 1858-1908.
  • 5SETt'Y V. InZeit: efficiently identifying insightful time points [ C ] //Proceedings of the VLDB Endowment VLDB Endow- ment Homepage Archive, 2010.
  • 6http: //news. google, com/news/advanced_news_search? as_ drrb = a.
  • 7魏瑞斌.基于关键词的情报学研究主题分析[J].情报科学,2006,24(9):1400-1404. 被引量:135

二级参考文献10

共引文献134

同被引文献34

  • 1马费成.论情报学的基本原理及理论体系构建[J].情报学报,2007,26(1):3-13. 被引量:136
  • 2马丽华,孙宁宁.情报学立场——情报学走出困境的路径[J].情报科学,2007,25(12):1769-1772. 被引量:12
  • 3Garfield E. Historiographic mapping of knowledge domains literature [J]. Journal of information science, 2004, :30(2) : 119 -145.
  • 4ROBILLARD M P, MURPHY G C. Concern graphs: finding and describing concerns using structural program dependencies [ C ]// Proceedings of the 24th international conference on software engi- neering. Florida: ACM. 2002:406 - 416.
  • 5ALLAN J. Topic detection and tracking: event-based information organization[M]. Norwell:Kluwer Academic Publishers, 2002.
  • 6ZHANG J, GHAHRAMANI Z, YANG Y. A probabilistic model for online document clustering with application to novelty detection [ J]. World journal of gastroenterology, 2004, 10 (20) : 3048 - 3052.
  • 7BLEI D M, Ng A Y, JORDAN M I. Latent dirichlet allocation [J]. The journal of machine learning research, 2003 (3) :993 - 1022.
  • 8GRIFFITHS T L, STEYVERS M. Finding scientific topics [ J ]. Proceedings of the National Academy of Sciences, 2004, 101 ( S1 ) : 5228 - 5235.
  • 9BUNTINE W, JAKULIN A. Applying discrete PCA in data analy- sis [ C ]//Proceedings of the 20th conference on uncertainty in arti- ficial intelligence. Arlington, Virginia: AUAI Press, 2004 : 59 - 66.
  • 10BLEI D M, LAFFERTY J D. Correlated topic models[ C]//Inter- national conference on machine learning. Guangzhou : IEEE, 2005 : 113 - 120.

引证文献1

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部