期刊文献+

基于随机游走算法的社会化标签的用户推荐 被引量:3

User recommendation in social tagging based on random walk algorithm
下载PDF
导出
摘要 利用来自Delicious的数据集,结合内容相似度的挖掘和语义关系处理,对社会化标签系统的用户推荐的算法进行了研究。具体工作为:利用标签和书签的语义关系,定义用户的内容信息,从而计算内容相似度;建立内容相似度与社会网络的用户链接关系,通过可重启的随机游走算法(RWR)结合来达成理想的效果。实验评测显示,无论是精确度还是召回率,该算法的效果都要明显优于baseline的算法。 By combining the similarity of contents and the semantic relation, the algorithms of user recommendation in social tagging system are studied by using the dataset derived from delicious, which is the world's leading social bookmarking service. This work mainly includes two aspects. Firstly, the similarity of contents is calculated by using the semantic relation between the tags and bookmarks; Secondly, random walk with restarts (RWR) algorithm is used to combine the similarity of contents with user links in social networks to achieve the desired effect. Experiments conducted on real datasets from delicious demonstrate that this method outperforms other temporal models and state-of-the-art prediction methods both from Drecision and recall.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第7期2388-2391,共4页 Computer Engineering and Design
基金 自然科学基金项目(61272343) 教育部科技发展中心网络时代的科技论文快速共享专项研究资助课题基金项目(2011110)
关键词 社会化标签 用户 资源 标签 推荐 social tagging user resource tag recommendation
  • 相关文献

参考文献11

  • 1Liang Huizhi, Xu Yue, Li Yuefeng, et al. Personalized recommender system based on item taxonomy and folksonomy [C] //Toronto, Canada: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 2010: 26-30,.
  • 2Feng Wei, Wang Jianyong. Incorporating heterogeneous information for personalized tag recommendation in social tagging systems [C] //Beijing, China: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012.. 12-16.
  • 3Zheng Nan, Li Qiudan. A recommender system based on tag and time information for social tagging systems [J]. Expert Systems with Applications, 2011, 38 (4): 4575-4587.
  • 4Gong Songjie, Ye Hongwu, Tan Hengsong. Combining memory- based and model-based collaborative filtering in recommender system [C] //Recommender System. Pacific-Asia Conference on Circuits, Communications and System, 2009: 690-693.
  • 5Karatzoglou Alexandros, Amatriain Xavier, Baltrunas Linas, et al. Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering [C] //Barcelona, Spain: Proceedings of the Fourth ACM Conference on Recommender Systems, 2010.
  • 6Capocci Andrea, Baldassarri Andrea, Servedio Vito D P, et al. Collaboration and semantics in flickr: From social interaction to se- mantic similarity [C] //Toronto, Ontario, Canada: Proceedings of the International Workshop on Modeling Social Media, 2010.
  • 7Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control [M]. Springer Publishing Company, Incorporated, 2010: 12-31.
  • 8Song Wei, Park Soon Cheol. Genetic algorithm for text clustering based on latent semantic indexing [J]. Computers Mathematics with Applications, 2009, 57 (11): 1901-1907.
  • 9Cassio P de Campos, Zeng Zhi, Ji Qiang. Structure learning of Bayesian networks using constraints [ C ] //Montreal, Quebec, Canada: Proceedings of the 26th Annual International Conference on Machine Learning, 2009: 113-120.
  • 10夏小伍,王卫平.基于信任模型的协同过滤推荐算法[J].计算机工程,2011,37(21):26-28. 被引量:10

二级参考文献7

  • 1Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 2Breese J, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison, USA: [s. n.], 1998.
  • 3Azzedin F, Maheswaran M. Towards Trust-aware Resource Management in Grid Computing Systems[C]//Proceedings of the 2nd International Symposium on Cluster Computing and the Grid. [S. l.]: IEEE Press, 2002.
  • 4Kamvar S D, Schlosser M T, Garcia-Molina H. The Eigentrust Algorithm for Reputation Manageraent in P2P Networks[C]// Proceedings of the 12th International Conference on World Wide Web. New York, USA: ACM Press, 2003:640-651.
  • 5Deshpande M, Karypis G. Item-based Top-n Recommendation Algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.
  • 6徐翔,王煦法.协同过滤算法中的相似度优化方法[J].计算机工程,2010,36(6):52-54. 被引量:37
  • 7邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558

共引文献9

同被引文献34

  • 1Seitlinger P,Kowald D,Trattner C,et al.Recommending tags with a model of human categorization[C].Proceedings of the 22nd ACM international conference on Conference on information & knowledge management.ACM,2013:2381-2386.
  • 2Hotho A,Jaschke R,Schmitz C.Information Retrieval in Folksomomies:Search and Ranking[M].Berlin:Springer,2006:411-426.
  • 3Mishne G.AutoTag:A Collaborative Approach to Automated Tag Assignment for Weblog Posts[C].Proceedings of the 15th International Conference on World Wide Web,2006:953-954.
  • 4Adrian B,Sauermann L,Roth-Berghofer T.Contag:A Semantic Tag Recommendation System[J].Journal of University Computer Science,2007,36(7):297-304.
  • 5Marchetti A,Tescono M,Ronzano F.SemKey:A Semanitc Collaborative Tagging System[C].Proceedings of the 16th International Conference on World Wide Web,2007:8-12.
  • 6Blei D M,Ng A Y,Jordan M I.Latent Dirichlet Allocation[J].Journal of Machine Learning Research,2003,3(4-5):993-1022.
  • 7Harvey M,Baillie M,Ruthven I,et al.Tripartite Hidden Topic Models for Personalized Tag Suggestion[C].Proceedings of the 32nd European Conference on IR Research,2010:432-443.
  • 8Subram V,Pandian S C.Topic ontology-based efficient tag recommendation approach for blogs[J].International Journal of Computational Science and Engineering,2014,9(3):177-187.
  • 9Heinrich G.Parameter Estimation for Text Analysis[OL]. http://www.arbylon.net/publications/text-est.pdf,2015-12-10.
  • 10GroupLens Research.MovieLens Data Sets[OL]. http://www.grouplens.org/node/73/,2015-09-15.

引证文献3

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部