期刊文献+

基于量化相关模式的多值关联规则挖掘算法

Quantitative association rules mining based on quantitative correlated pattern
下载PDF
导出
摘要 为了解决多值关联规则挖掘中忽视罕见且有价值的非频繁模式的问题,提出了一种新的多值关联规则挖掘算法—QCoMine。该算法引入了量化相关模式的概念,通过考察多值属性间互信息熵和全置信度,找到具有强信息关系的属性集进而产生规则。实验结果表明,由于在属性层和区间层进行了剪枝,因此缩减了搜索空间,提高了算法的性能,且得到更高置信度、更有价值的规则。 To resolve the mining problem of the quantitative association, which ignore the rare but much valuable non-frequent patterns, a new algorithm of quantitative association rules, QCoMine, is proposed. The new algorithm is based on a novel notion of quantitive correlated pattern, the mutual information entropy of the attributes and all-confidence are studied here, the attributes sets with strong information relationship is found. The expriments show that due to the prune on the attribute-level and the interval-level, the research space decrease sharply, so the mining efficiency is improved greatly, and the acquired association rules are high confidence and more valuable ones.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第7期2422-2425,共4页 Computer Engineering and Design
关键词 多值关联联规则 非频繁模式 量化相关模式 互信息 全置信度 quantitative association rules non-frequent patterns quantitative correlated pattern mutual information all-confidence
  • 相关文献

参考文献12

  • 1王二锋,崔杜武,陈皓,崔颖安,费蓉.一种新的多值属性关联规则挖掘算法[J].计算机工程,2008,34(22):77-79. 被引量:5
  • 2刘乐乐,田卫东.基于属性互信息熵的量化关联规则挖掘[J].计算机工程,2009,35(14):38-40. 被引量:12
  • 3Ke Y, Cheng J, Ng W. Mic Irarnework: An information-theoretic approach to quantitative association rule mining [C] // Proceeding of the 22nd International Con{erenceon Data Engineering IEEE Computer Society, Los Alamitos, CA, 2006: 112.
  • 4KE Yiping, James Cheng, Wifred NgW. An information-theoretic approach to quantitative association rule ming [J]. Knowl Inform Syst J, 2008, 16 (2): 213-244.
  • 5Ke Y, Cheng J, Ng W. Mining quantitative correlated patterns using an information theoretic approach [C] // Proceeding of the 12th ACM SIGKDD International Conference on Knowledge Disco- very and Data Mining New York: ACM, 2006: 227-236.
  • 6史庆伟,赵政,鲍虎.基于全置信度关联分析的web层次聚类方法[J].辽宁工程技术大学学报(自然科学版),2007,26(6):892-894. 被引量:2
  • 7邓莉琼,陈丹雯,袁志民,吴玲达.面向语义属性查询的动画场景图像检索系统[J].计算机工程与应用,2011,47(19):1-4. 被引量:1
  • 8Ke Y, Cheng J, Ng W. Correlation search in graph databases [C] // Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007: 277-236.
  • 9Williams D W, HUAN J, WANG W. Graph database indexing using structured graph decomposition [C] // Iatanbul, Turkey:Proceedings of the 2ard IEEE International Conference on Data Engineering, 2007: 976-985.
  • 10Ke Y, KE YiPing, James Cheng, et al. Correlated Pattern Ming in Quantitative Databases [J]. ACM Transactions on Database Systems, 2008, 33 (3): 20-23.

二级参考文献31

  • 1贺志,黄厚宽,田盛丰.一种优化相关规则的发现方法[J].计算机学报,2006,29(6):906-913. 被引量:12
  • 2史庆伟,赵政,朝柯.一种基于后缀树的中文网页层次聚类方法[J].辽宁工程技术大学学报(自然科学版),2006,25(6):890-892. 被引量:11
  • 3杨炳儒 孙海洪.语言场理论在挖掘关联规则中的应用[J].计算机科学,2000,27(11):66-69.
  • 4Agrawal R, lmielinski T, Swanmi A. Mining Association Rules Between Sets of Items in Larger Databases[C]//Proc. of ACM SIGMOD Int'l Conf. on Management of Data. Washington, USA: [s. n.], 1993: 207-216.
  • 5Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Withotit Candidate Generation[C]//Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas, TX, USA: [s. n.], 2000.
  • 6Agrawal R C. A Tree Projection Algorithm for Generation of Frequent ltemsets[J]. J. of Parallel and Distributed Computing, 2001, 61(3): 350-371.
  • 7Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules[C]//Proc.of the 20th International Conference on Very Large Data Bases.Santiago,Chile:[s.n.],1994:487-499.
  • 8Agrawal R,Srikant R.Mining Quantitative Association Rules in Large Relational Tables[C]//Proc.of the 15th ACM SIGMOD Symposium on Principles of Database Systems.Montreal,Canada:[s.n.],1996:1-12.
  • 9Fukuda T,Morimoto Y.Mining Optimized Association Rules for Numeric Attributes[C]//Proc.of the 15th ACM SIGMOD Symposium on Principles of Database Systems.Montreal,Canada:[s.n.],1996:182-191.
  • 10Zhang Zhaohui,Lu Yuchang,Zhang Bo.An Effective Partitioning Combining Algorithm for Discovering Quantitative Association Rules[C]//Proc.of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Singapore:[s.n.],1997:241-251.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部