期刊文献+

基于AdaBoost-SVM级联分类器的行人检测 被引量:11

Pedestrian detection based on cascade AdaBoost-SVM
下载PDF
导出
摘要 针对实时行人检测中AdaBoost级联分类算法存在的问题,改进AdaBoost级联分类器的训练算法,提出了Ada-Boost-SVM级联分类算法,它结合了AdaBoost和SVM两种算法的优点。对自定义样本集和PET图像库进行行人检测实验,实验中选择固定大小的窗口作为候选区域并利用类Haar矩形特征进行特征提取,通过AdaBoost-SVM级联分类器进行分类。实验结果表明AdaBoost-SVM级联分类器的分类器准确率达到99.5%,误报率低于0.05%,优于AdaBoost级联分类器,训练时间要远远小于SVM分类器。 For the problem of the cascade AdaBoost classification algorithm which is used in the real time pedestrian detection, the training algorithm of cascade AdaBoost classifier is improved and a AdaBoost-SVM cascade classification algorithm is proposed, which combined the advantages of the AdaBoost algorithm with that of SVM. The pedestrian detection experiment with the database of captured samples and PET database is conducted. The candidate areas with a window of fixed size are captured for Haar-like rectangle feature extracting in the experiment, and then two classes classification is performed by using the proposed cascade AdaBoost-SVM classifier. The experimental result shows that the cascade classifier proposed by us can get better performance than cascade AdaBoost classifier and its accuracy can reach 99.5o//00 and the false alarm rate is less than 0. 05%. Compared with SVM classifier, the training time is greatly reduced.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第7期2547-2550,2565,共5页 Computer Engineering and Design
基金 山西省回国留学人员科研基金项目(2010-30) 山西省高等学校留学回国人员科研基金项目(2011-10)
关键词 AdaBoost级联算法 支持向量机算法 行人检测 类Haar矩形特征 分类器 cascade AdaBoost algorithm SVM algorithm pedestrian detection Haar-like rectangle feature classifier
  • 相关文献

参考文献10

  • 1Robert E Schapire. The convergence rate of Adat3oost [C]//Haifa, Israel: The 23rd Conference on Learning Theory, 2010.
  • 2Viola P, Jones M. Method and system for object detection in digital images [P]. US: 7, 099, 510 B2, 2006.
  • 3李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 4Chang W C, Cho C W. Online boosting for vehicle detection [J]. IEEE Trans on Systems, Man and Cybernetics-Part B: Cybernetics, 2010, 40 (3): 892-902.
  • 5Zhu Q, Avidan S, Ye M. Fast human detection using a cascade of histograms of oriented gradients [C]//New York, USA: Proceedings of the Conference on Computer Vision and Pattern Recognition, 2006: 1491-1498.
  • 6Chen Y T, Chen C S. Fast human detection using a novel boosted cascade structure with meta stages I-J3. IEEE Trans on Image Processing, 2008, 17 (8):1452-1464.
  • 7Cao X B, Qiao H, Keane J. A low-cost pedestrian-detection system with a single optical camera [J]. IEEE Trans on Intelligent Transportation Systems, 2008, 9 (1): 58-67.
  • 8何海燕,施培蓓.基于改进AdaBoost算法的行人检测方法[J].安庆师范学院学报(自然科学版),2009,15(3):40-43. 被引量:2
  • 9陈俊杰,李海芳,相洁,等.图像情感语义分析技术[M].北京:电子工业出版社,2011.
  • 10郭烈,王荣本,张明恒,金立生.基于Adaboost算法的行人检测方法[J].计算机工程,2008,34(3):202-204. 被引量:16

二级参考文献26

  • 1孔凡芝,张兴周,谢耀菊.基于Adaboost的人脸检测技术[J].应用科技,2005,32(6):7-9. 被引量:19
  • 2郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 3潘石柱,殳伟群,王令群.基于Adaboost的汽车牌照快速定位[J].计算机工程,2006,32(12):187-188. 被引量:9
  • 4Viola P,Jones M,Snow D.Detecting pedestrians using patterns of motion and appearance[A].Proceedings of International Conference on Computer Vision[C].Washington DC,USA:IEEE,2003:73-741.
  • 5Lowe D M.Distinctive image features from scale-invariant keypoints[J].In International Journal of Computer Vision (IJCV),2004:91-110.
  • 6Grubb G,Zelinsky A,Nilsson L et al.3D Vision sensing for improved pedestrian safety[C].Proceedings of IEEE International Conference on Intelligent Vehicle Symposium,Parma,Italy:IEEE,2004:19-24.
  • 7Payam Sabzmeydani,Greg Mori.Detecting pedestrians by learning shapelet features[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2007:1-8.
  • 8Cao X B,Qiao H,Keane J.A low-cost pedestrian detection system with a single optical cameral[C].IEEE Transactions on Intelligent Transportation System,2008,9(1):58-67.
  • 9Wei C X,Cao X B,Y W Xu,Qiao H,Wang F Y.The treelike assembly classifier for pedestrian detection[A].Proceedings of Pacific Asian Workshop on Intelligence and Security Informatics[C].Chengdu,China:Springer,2007:232-237.
  • 10Xu F L,Liu X,Fujinmura K.Pedestrai detection and tracking with night vision[C].IEEE Transactions on Intelligent Transportation System,2005,6(1):63-71.

共引文献73

同被引文献100

  • 1苏航,徐从安,姚力波,李健伟,凌青,高龙.一种轻量化SAR图像舰船目标斜框检测方法[J].航空学报,2022,43(S01):157-164. 被引量:3
  • 2李鑫滨,陈云强,张淑清.基于LS-SVM多分类器融合决策的混合故障诊断算法[J].振动与冲击,2013,32(19):159-164. 被引量:10
  • 3业宁,梁作鹏,董逸生,王厚立.一种SVM非线性回归算法[J].计算机工程,2005,31(20):19-21. 被引量:8
  • 4郭磊,徐友春,李克强,连小珉.基于单目视觉的实时测距方法研究[J].中国图象图形学报,2006,11(1):74-81. 被引量:98
  • 5赵书安,冯少彤,聂守平.Hough变换在几何特征检测中的应用[J].南京师范大学学报(工程技术版),2006,6(4):66-70. 被引量:8
  • 6ULGES A,WOWING M,BREUEL T. Learning Visual Contexts for Image Annotation from Flickr Groups [J]. IEEETransactions on Multimedia, 2010, 13(2) : 330 - 341.
  • 7RUI Y,HUANG T S, CHANG S F. Image Retrieval: Past,Present, and Future [J]. Journal of Visual Communicationand Image Representation, 1997,10: 1_23.
  • 8CHANG E,KINGSHY C. SYCHAY C,et al. CBSA: Content Based Soft Annotation for Multimodal Image RetrievalUsing Bayes Point Machines [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13 ( 1):26-38.
  • 9HOU J , CHEN Z, QIN X,et al. Automatic Image Search Based on Improved Feature Descriptors and Decision Tree [J].Integrated Computer-Aided Engineering, 2011,18(2) : 167 - 180.
  • 10MORI Y,TAKAHASHI H,OKA R. Image-to-word Transformation Based on Dividing and Vector Quantizing Imageswith Words [EB/OL]. (2014 - 01 -15) [2014 - 03 - 25], http: //citeseer. ist. psu. edu/368129. html.

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部