期刊文献+

基于足底压力分布时空HOG特征的步态识别方法 被引量:11

Gait Recognition Based on Spatio-Temporal HOG Feature of Plantar Pressure Distribution
下载PDF
导出
摘要 提出一种基于足底压力分布时空HOG的步态识别算法,在特征层对足底压力的时间域和空间域信息进行融合.首先寻找足底总压力时间曲线上的极大值和极小值等几个特征点,利用这几个特征点所对应时刻的足底压力分布来构建时空HOG特征向量,最后采用SVM进行步态识别.采集不同行走速度下30人的单步足底压力分布数据进行实验,在不区分样本速度的情况下,该方法的识别率为93.5%.实验结果表明足底压力分布时空HOG特征能较好地刻画步态动力学特征,且具有良好的速度适应性. A gait recognition method proposed. Spatio-temporal HOG based on spatio-temporal histogram of embodies the feature fusion of spatial oriented gradient ( HOG ) is and temporal plantar pressure information. Firstly, several key points, such as the maximum and the minimum points on the pressure-time curve, are picked out. Then, plantar pressure distribution images corresponding to the moment of key points are used to construct spatio-temporal HOG feature vector. Finally, support vector machine classification is applied to implement gait classification. Gait samples are collected from 30 persons at different walking speeds. When the walking speeds of the samples in the training and testing sets are not differentiated, the recognition rate is 93.5%. The experimental results demonstrate that spatio-temporal HOG feature accurately describes the dynamic plantar pressure distribution during walking, and it also has good speed-adaptable properties.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第6期529-536,共8页 Pattern Recognition and Artificial Intelligence
基金 国家科技支撑计划项目(No.2013BAH14F01) 安徽省自然科学基金项目(No.1208085MF112)资助
关键词 生物特征识别技术 步态识别 足底压力分布 时空方向梯度直方图 Biometrics Identification Technology, Gait Recognition, Plantar Pressure Distribution, Spatio-Temporal Histogram of Oriented Gradient
  • 相关文献

参考文献25

  • 1Murakita T, Ikeda T, Ishiguro H. Human Tracking Using Floor Sen?sors Based on the Markov Chain Monte Carlo Method//Proc of the 17 th International Conference on Pattern Recognition. Cambridge, UK, 2004, IV: 917-920.
  • 2Liau W H, Wu Chaolin, Fu Lichen. Inhabitants Tracking System in a Cluttered Home Environment via Floor Load Sensors. IEEE Trans on Automation Science and Engineering, 2008, 5 (l ): 10-20.
  • 3Takeda T, Kuramoto K, Kobashi S, et al. Biometrics Security by Dynamics of Left and Right Sole Pressure While Walking[EB/OL]. [2012 - 07 - 01]. http://proceedings. spiedigitallibrary. org/ datal Conferences/SPIEP/62093/805814_1. pdf.
  • 4Murray M P. Gait as a Total Pattern of Movement. American Journal of Physical Medicine, 1967, 46 ( 1 ) : 290-332.
  • 5Kale A, Sundaresan A, Rajagopalan A, et al, Identification of Hu?mans Using Gait. IEEE Trans on Image Processing, 2004, 13(9): 1163-1173.
  • 6史力民,董佳英,李泰山,吴雪冬.赤足残缺足迹检验初探[J].辽宁警专学报,2005,7(2):6-9. 被引量:8
  • 7Rodriguez R V, Evans N W D, Lewis R P, et al, An Experimental Study on the Feasibility of Footsteps as a Biometric [EB/OL] . [2012 -07 -01]. http://atvs. ii. uam. esifilesiFootstepBiometri cEUSIPCO07. pdf.
  • 8林尔东,姚志明,郑重,周旭,孙向阳,孙怡宁.一种改进的基于地面反作用力的步态识别方法[J].模式识别与人工智能,2011,24(3):353-359. 被引量:15
  • 9Vera R R, Mason J, Fierrez J, et al, Analysis of Time Domain Infor?mation for Footstep Recognition//Proc of the 6th International Sym?posium on Visual Computing. Las Vegas, USA, 2010: 489-498.
  • 10Cho YO, So B C, Jung J W. User Recognition Using Sequential Footprints under Shoes Based on Mat-Type Floor Pressure Sensor. Advanced Science Letters, 2012, 9( 1) : 591-596.

二级参考文献15

  • 1陶卿.基于约束区域的神经网络模型及其在优化和联想记忆中的应用:中国科学技术大学博士学位论文[M].,1999..
  • 2Murray M P. Gait as a Total Pattern of Movement. American Journal of Physical Medicine, 1967, 46 ( 1 ) : 290 - 332.
  • 3Zhao Guoying, Chen Rui, Liu Guoyin, et al. Amplitude Spectrum- Based Gait Recognition// Proc of the 6th International Conference on Automatic Face and Gesture Recognition. Seoul, Korea, 2004: 23 - 28.
  • 4Boulqouris N V, Chi Zhiwei. Gait Recognition Using Radon Transform and Linear Discriminant Analysis. IEEE Trans on Image Processing, 2007, 16(3) : 731 -740.
  • 5BenAbdelkader C, Cutler R G, Davis L S. Gait Recognition Using Image Self-Similarity. EURASIP Journal on Applied Signal Process- ing, 2004, (4) : 572 -585.
  • 6Han Ju, Bhanu B. Individual Recognition Using Gait Energy Image. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 (2) : 316 -322.
  • 7Li D, Pedrycz W, Pizzi N J. Fuzzy Wavelet Packet Based Feature Extraction Method and Its Application to Biomedical Signal Classifi- cation. IEEE Trans on Biomedical Engineering, 2005, 52 (6):1132 -1139.
  • 8Moustakidis S P, Theocharis J B, Giabas G. Subject Recognition Based on Ground Reaction Force Measurements of Gait Signals. IEEE Trans on Systems, Man and Cybernetics, 2008, 38(6) : 1476 - 1485.
  • 9Xu Su, Zhou Xu, Sun Yining. A Genetic Algorithm-Based Feature Selection Method for Human Identification Based on Ground Reaction Force// Proc of the 1 st ACM/SIGEVO Summit on Genetic and Evolutionary Computation. Shanghai, China, 2009:665-670.
  • 10Cao Jinde,Journal of COmputer and System Sciences,2000年,60卷,1期,179页

共引文献50

同被引文献77

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部