期刊文献+

一种改进的粒子滤波SLAM算法 被引量:1

An Improved Particle Filter SLAM Algorithm
下载PDF
导出
摘要 传统的粒子滤波SLAM算法中,由于历史信息未被利用而导致估计精度较低.文中结合精确稀疏滞后状态信息滤波具有自然稀疏的信息矩阵因而估计精度高以及精确稀疏扩展信息滤波计算效率高的优点,将二者混合应用于粒子滤波SLAM算法中.不但充分应用信息矩阵记录的机器人位姿与特征间关系的历史信息从而提高估计的精度,而且克服机器人转动状态及环境特征疏密带来的应用缺陷.仿真与真实机器人实验的实验结果均表明文中算法的有效性与可行性. The estimation accuracy of the conventional particle filter algorithm is low because the historical information is not fully utilized. Combining the high estimation accuracy of exactly sparse delayed-state filter(ESDF) and the high efficiency of exactly sparse extended information filter( ESEIF), an improved particle filter SLAM algorithm is proposed. In this algorithm, the information matrix of ESDF, maintaining the historical relationship of robot pose and characteristics, improves the accuracy of the estimate, and ESEIF overcomes the defects of robot rotational state and characteristics density. Results of both emulational and factual experiments show that the proposed algorithm is valid and feasible.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第6期537-542,共6页 Pattern Recognition and Artificial Intelligence
基金 陕西省教育厅科学研究计划资助项目(No.12JK0518)
关键词 同时定位与地图创建(SLAM) 历史信息 粒子滤波 Simultaneous Localization and Map Building (SALM), Historical Information, Particle Filter
  • 相关文献

参考文献15

  • 1Arulampalam S M, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Non-Linear/Non-Gaussian Bayesian Tracking. IEEE Trans on Signal Processing, 2002, 50(2) : 174-188.
  • 2Pit M K, Shephard N. Filtering via Simulation: Auxiliary Particle Filters. Journal of the American Statistical Association, 1999, 94 (446) : 590-599.
  • 3Musso C, Oudjane N, Legland F. Improving Regularized Particle Filters [ EB/OL ]. [ 2012 - 09 - 30 ]. http://www, irisa, fr/aspi/ legland/pub/smc-book, ps. gz.
  • 4Martinez-Cantim R, de Freitas N, Castellanos J A. Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm : Marginal-SLAM//Proc of the IEEE International Conference on Robotics and Automation. Roma, Italy, 2007: 2415 - 2420.
  • 5厉茂海,洪炳熔,罗荣华.用改进的Rao-Blackwellized粒子滤波器实现移动机器人同时定位和地图创建[J].吉林大学学报(工学版),2007,37(2):401-406. 被引量:32
  • 6周武,赵春霞.一种基于遗传算法的FastSLAM 2.0算法[J].机器人,2009,31(1):25-32. 被引量:20
  • 7朱代先,王晓华.基于稀疏扩展信息滤波和粒子滤波的SLAM算法[J].计算机应用,2012,32(5):1325-1328. 被引量:4
  • 8朱代先,王晓华.基于精确稀疏扩展信息滤波的粒子滤波SLAM算法研究[J].计算机工程与科学,2012,34(7):140-145. 被引量:4
  • 9Walter M R, Eustice R M, Leonard J J. Exactly Sparse Extended Information Filters for Feature-Based SLAM. The International Journal of Robotics Research, 2007, 26 (4) : 335-339.
  • 10Eustice R M, Singh H, Leonard J J. Exactly Sparse Delayed-State Filters for View-Based SLAM. IEEE Trans on Robotics, 2006, 22 (6) : 1100-1114.

二级参考文献77

共引文献60

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部