期刊文献+

基于视觉词典的单目视觉闭环检测算法 被引量:17

Loop Closure Detection AlgorithmBased on Monocular Vision Using Visual Dictionary
下载PDF
导出
摘要 针对移动机器人单目视觉同步定位与地图构建中的闭环检测问题,文中设计一种基于视觉词典的闭环检测算法.算法对采集的每帧图像通过SURF进行特征提取,应用模糊K均值算法对检测的视觉特征向量进行分类,在线构建表征图像的视觉词典.为精确表征局部视觉特征与视觉单词间的相似关联,利用混合高斯模型建立视觉词典中的每一视觉单词的概率模型,实现图像基于视觉词典的概率向量表示,通过向量的内积来计算图像间的相似度.为保证闭环检测的成功率,应用贝叶斯滤波融合历史闭环检测与相似度信息来计算闭环假设的后验概率分布.另外,引入浅层记忆与深度记忆两种内存管理机制来保证算法执行的快速性.实验结果证明该方法的有效性. Aiming at the problem of loop closure detection in monocular simultaneous localization and mapping for mobile robots, a detection algorithm based on visual dictionary (VD) is presented. Firstly, feature extraction is performed for each required image using SURF methods. Subsequently, a fuzzy K-means algorithm is employed to cluster these visual feature vectors into visual words based on VD which is constructed online. To precisely represent the similarities between each visual word and corresponding local visual features , Gaussian mixture model is proposed to learn the probability model of every visual word in bags of visual words. Consequently, every image can be denoted as a probabilistic vector of VD, and thus the similarities between any two images can be computed based on vector inner product. To guarantee the continuity of the closed-loop detection, a Bayesian filter method is applied to fuse historical closed-loop detection information and the obtained similarities to calculate the posterior probability distribution of closed-loop hypothesis. Furthermore, two memory management mechanisms, shallow memory and deep memory, are introduced to improve the process speed of the proposed algorithm. The experimental results demonstrate the validity of the proposed approach.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第6期561-570,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61104216) 江苏省自然科学基金项目(No.BK2012832 BK2011758)资助
关键词 单目视觉同步定位与地图构建 闭环检测 视觉词典 混合高斯模型 Monocular Simultaneous Localization and Mapping, Loop Closure Detection, Visual Dictionary, Gaussian Mixture Model
  • 相关文献

参考文献20

  • 1Civera J, Davison A, Montiel M. Inverse Depth Parametrization for Monocular SLAM. IEEE Trans on Robotics, 2008, 24 (5) : 932- 945.
  • 2Civera J, Davison A, Grasa O G, et al. I-Point RANSAC for EKF?Based Structure from Motion//Proc of the IEEE International Con?ference on Intelligent Robots and Systems. St Louis, USA, 2009: 3498-3504.
  • 3Cummins M, Newman P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. The International Journal of Robotics Research, 2008, 27 ( 6) : 647-665.
  • 4Folkesson J, Christensen H. Closing the Loop with Graphical SLAM. IEEE Trans on Robotics, 2007 , 23 ( 4 ) : 731-741.
  • 5Wen L, Ray 1. A Pure Vision-Based Topological SLAM System. The International Journal of Robotics Research, 2012, 31 (4): 403-428.
  • 6Williams B, Cummins M. An Image-to-Map Loop Closing Method for Monocular SLAM//Proc of the IEEE International Conference on Intelligent Robots and Systems. Nice, France, 2008: 2053- 2059.
  • 7Cummins M, Newman P. Appearance-Only SLAM at Large Scale with FAB-MAP 2. O. The International Journal of Robotics Research, 2011 , 30( 9) : 1100-1123.
  • 8Botterill T, Mill S, Green R. Bags-of-Words-Driven, Single Camera Simultaneous Localization and Mapping. Journal of Field Robotics, 2011, 28(2) : 204-226.
  • 9Angeli A, Filliat 0, Doncieux S, et al. Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words. IEEE Trans on Robotics, 2008, 24(5): 1027-1037.
  • 10]Cummins M, Newman P. Accelerating FAB-MAP with Concentration Inequalities. IEEE Trans on Robotics, 2010, 26(6): 1042-1050.

同被引文献78

  • 1潘锡英,何元烈,孙盛,陈佳腾.基于图像感兴趣区域的机器人闭环检测算法[J].机器人,2019,41(5):676-682. 被引量:2
  • 2张括嘉,张云洲,吕光浩,龚益群.基于局部语义拓扑图的视觉SLAM闭环检测[J].机器人,2019,41(5):649-659. 被引量:15
  • 3陈玲,沈红标,李咸伟,刘其真.改进的图像纹理检索方法在矿石识别中的应用[J].中国图象图形学报,2006,11(11):1700-1703. 被引量:12
  • 4ANGELI A, FILLIAT D. A fast and incremental method for loop-closure detection using bags of visual words[J].IEEE Transactions on Robotics, 2008,24 (5) : 204-226.
  • 5ANGEL! A, FILLIAT D. Real time visual loop closure de- tection [C]. IEEE International Conference on Robotics and Automation (ICRA), Pasadena, 2008 : 1842-1847.
  • 6Liu Yang, Zhang Hong. Indexing visual features: real-time loop closure detection using a tree structure[C]. International Conference on Robotics and Automation. 2012:3613-3618.
  • 7MATHIEU L,FRANCOIS M. Appearance-based loop closure detection for online large-scale and long-term operation[J]. IEEE Transaction on Robotics, 2013,9(3) :734.
  • 8BOTrERILL T, GREEN R, MILLS S. A Bag-of-Words speedometer for single camera SLAM [C]. 24'h International Conference Image and Vision Computing New Zealand (IVCNZ 2009), 2009 : 91-96.
  • 9CUMMINS M, NEWMAN P. Accelerating FAB-MAP with concentration inequalities [J]. IEEE Trans on Robotics, 2010,26(6) : 1042-1050.
  • 10Bazeille S, Filliat D. Combining odometry and visual loop- closure detection for consistent topo-metrical mappinglJ]. RAIRO -Operations Research, 2010~ 44(04): 365-377.

引证文献17

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部